|
|
|
|
|
import os |
|
|
import json |
|
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
from i3_model import ChunkTokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class I3Tokenizer(PreTrainedTokenizer): |
|
|
""" |
|
|
HuggingFace-compatible tokenizer for i3 model using ChunkTokenizer. |
|
|
""" |
|
|
|
|
|
vocab_files_names = {"vocab_file": "chunk_vocab_combined.json"} |
|
|
pretrained_vocab_files_map = {} |
|
|
max_model_input_sizes = {"i3": 512} |
|
|
|
|
|
def __init__(self, vocab_file=None, **kwargs): |
|
|
""" |
|
|
Args: |
|
|
vocab_file: Path to chunk_vocab_combined.json |
|
|
""" |
|
|
super().__init__(**kwargs) |
|
|
self.chunk_tokenizer = ChunkTokenizer() |
|
|
if vocab_file: |
|
|
self.chunk_tokenizer.load(vocab_file) |
|
|
self.vocab_file = vocab_file |
|
|
|
|
|
@property |
|
|
def vocab_size(self): |
|
|
return self.chunk_tokenizer.vocab_size |
|
|
|
|
|
def _tokenize(self, text, **kwargs): |
|
|
""" |
|
|
Convert text string to list of token strings (chunks). |
|
|
""" |
|
|
|
|
|
indices = self.chunk_tokenizer.encode(text) |
|
|
tokens = [self.chunk_tokenizer.idx_to_chunk[i] for i in indices] |
|
|
return tokens |
|
|
|
|
|
def _convert_token_to_id(self, token): |
|
|
""" |
|
|
Convert chunk string to integer ID. |
|
|
""" |
|
|
return self.chunk_tokenizer.chunk_to_idx.get(token, self.chunk_tokenizer.unk_idx) |
|
|
|
|
|
def _convert_id_to_token(self, index): |
|
|
""" |
|
|
Convert integer ID to chunk string. |
|
|
""" |
|
|
return self.chunk_tokenizer.idx_to_chunk.get(int(index), self.chunk_tokenizer.unk_token) |
|
|
|
|
|
def encode(self, text, **kwargs): |
|
|
""" |
|
|
Convert text string to list of indices. |
|
|
""" |
|
|
return self.chunk_tokenizer.encode(text) |
|
|
|
|
|
def decode(self, token_ids, **kwargs): |
|
|
""" |
|
|
Convert list of indices back to text string. |
|
|
""" |
|
|
return self.chunk_tokenizer.decode(token_ids) |
|
|
|
|
|
def save_vocabulary(self, save_directory): |
|
|
""" |
|
|
Save the vocabulary to a directory. |
|
|
""" |
|
|
if not os.path.exists(save_directory): |
|
|
os.makedirs(save_directory) |
|
|
save_path = os.path.join(save_directory, "chunk_vocab_combined.json") |
|
|
self.chunk_tokenizer.save(save_path) |
|
|
return (save_path,) |
|
|
|