Create tokenizer_i3.py
Browse files- tokenizer_i3.py +76 -0
tokenizer_i3.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# tokenizer_i3.py
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from transformers import PreTrainedTokenizer
|
| 5 |
+
|
| 6 |
+
from i3_model import ChunkTokenizer
|
| 7 |
+
|
| 8 |
+
# ======================================================================
|
| 9 |
+
# HuggingFace Tokenizer Wrapper for ChunkTokenizer
|
| 10 |
+
# ======================================================================
|
| 11 |
+
class I3Tokenizer(PreTrainedTokenizer):
|
| 12 |
+
"""
|
| 13 |
+
HuggingFace-compatible tokenizer for i3 model using ChunkTokenizer.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
vocab_files_names = {"vocab_file": "chunk_vocab_combined.json"}
|
| 17 |
+
pretrained_vocab_files_map = {}
|
| 18 |
+
max_model_input_sizes = {"i3": 512}
|
| 19 |
+
|
| 20 |
+
def __init__(self, vocab_file=None, **kwargs):
|
| 21 |
+
"""
|
| 22 |
+
Args:
|
| 23 |
+
vocab_file: Path to chunk_vocab_combined.json
|
| 24 |
+
"""
|
| 25 |
+
super().__init__(**kwargs)
|
| 26 |
+
self.chunk_tokenizer = ChunkTokenizer()
|
| 27 |
+
if vocab_file:
|
| 28 |
+
self.chunk_tokenizer.load(vocab_file)
|
| 29 |
+
self.vocab_file = vocab_file
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def vocab_size(self):
|
| 33 |
+
return self.chunk_tokenizer.vocab_size
|
| 34 |
+
|
| 35 |
+
def _tokenize(self, text, **kwargs):
|
| 36 |
+
"""
|
| 37 |
+
Convert text string to list of token strings (chunks).
|
| 38 |
+
"""
|
| 39 |
+
# Encode to indices, then convert back to chunk strings
|
| 40 |
+
indices = self.chunk_tokenizer.encode(text)
|
| 41 |
+
tokens = [self.chunk_tokenizer.idx_to_chunk[i] for i in indices]
|
| 42 |
+
return tokens
|
| 43 |
+
|
| 44 |
+
def _convert_token_to_id(self, token):
|
| 45 |
+
"""
|
| 46 |
+
Convert chunk string to integer ID.
|
| 47 |
+
"""
|
| 48 |
+
return self.chunk_tokenizer.chunk_to_idx.get(token, self.chunk_tokenizer.unk_idx)
|
| 49 |
+
|
| 50 |
+
def _convert_id_to_token(self, index):
|
| 51 |
+
"""
|
| 52 |
+
Convert integer ID to chunk string.
|
| 53 |
+
"""
|
| 54 |
+
return self.chunk_tokenizer.idx_to_chunk.get(int(index), self.chunk_tokenizer.unk_token)
|
| 55 |
+
|
| 56 |
+
def encode(self, text, **kwargs):
|
| 57 |
+
"""
|
| 58 |
+
Convert text string to list of indices.
|
| 59 |
+
"""
|
| 60 |
+
return self.chunk_tokenizer.encode(text)
|
| 61 |
+
|
| 62 |
+
def decode(self, token_ids, **kwargs):
|
| 63 |
+
"""
|
| 64 |
+
Convert list of indices back to text string.
|
| 65 |
+
"""
|
| 66 |
+
return self.chunk_tokenizer.decode(token_ids)
|
| 67 |
+
|
| 68 |
+
def save_vocabulary(self, save_directory):
|
| 69 |
+
"""
|
| 70 |
+
Save the vocabulary to a directory.
|
| 71 |
+
"""
|
| 72 |
+
if not os.path.exists(save_directory):
|
| 73 |
+
os.makedirs(save_directory)
|
| 74 |
+
save_path = os.path.join(save_directory, "chunk_vocab_combined.json")
|
| 75 |
+
self.chunk_tokenizer.save(save_path)
|
| 76 |
+
return (save_path,)
|