|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import json |
|
|
import os |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RWKVMambaHybrid(nn.Module): |
|
|
def __init__(self, d_model, d_state=64): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.d_state = d_state |
|
|
self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5) |
|
|
self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01) |
|
|
self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01) |
|
|
self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01) |
|
|
self.D = nn.Parameter(torch.ones(d_model) * 0.1) |
|
|
|
|
|
def forward(self, x): |
|
|
B, T, C = x.shape |
|
|
h = torch.zeros(B, C, device=x.device) |
|
|
s = torch.zeros(B, self.d_state, device=x.device) |
|
|
outputs = [] |
|
|
|
|
|
for t in range(T): |
|
|
x_t = x[:, t, :] |
|
|
h = self.w_mix * h + (1 - self.w_mix) * x_t |
|
|
s = s @ self.A.T + x_t @ self.B.T |
|
|
y_t = s @ self.C.T + h * self.D |
|
|
outputs.append(y_t) |
|
|
|
|
|
return torch.stack(outputs, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FullAttention(nn.Module): |
|
|
def __init__(self, d_model, n_heads=16): |
|
|
super().__init__() |
|
|
self.d_model = d_model |
|
|
self.n_heads = n_heads |
|
|
self.head_dim = d_model // n_heads |
|
|
assert d_model % n_heads == 0, "d_model must be divisible by n_heads" |
|
|
self.qkv = nn.Linear(d_model, d_model * 3) |
|
|
self.out_proj = nn.Linear(d_model, d_model) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
B, T, C = x.shape |
|
|
qkv = self.qkv(x) |
|
|
q, k, v = qkv.chunk(3, dim=-1) |
|
|
|
|
|
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5) |
|
|
if mask is not None: |
|
|
mask = mask.expand(B, self.n_heads, T, T).bool() |
|
|
attn = attn.masked_fill(mask == 0, float('-inf')) |
|
|
attn = F.softmax(attn, dim=-1) |
|
|
out = attn @ v |
|
|
out = out.transpose(1, 2).contiguous().view(B, T, C) |
|
|
return self.out_proj(out) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class i3HybridBlock(nn.Module): |
|
|
def __init__(self, d_model, d_state=64, ffn_mult=4): |
|
|
super().__init__() |
|
|
self.ln1 = nn.LayerNorm(d_model) |
|
|
self.hybrid = RWKVMambaHybrid(d_model, d_state) |
|
|
self.ln2 = nn.LayerNorm(d_model) |
|
|
d_ff = d_model * ffn_mult |
|
|
self.ffn = nn.Sequential( |
|
|
nn.Linear(d_model, d_ff), |
|
|
nn.GELU(), |
|
|
nn.Linear(d_ff, d_model) |
|
|
) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
x = x + self.hybrid(self.ln1(x)) |
|
|
x = x + self.ffn(self.ln2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class i3AttentionBlock(nn.Module): |
|
|
def __init__(self, d_model, n_heads=16, ffn_mult=4): |
|
|
super().__init__() |
|
|
self.ln1 = nn.LayerNorm(d_model) |
|
|
self.attn = FullAttention(d_model, n_heads) |
|
|
self.ln2 = nn.LayerNorm(d_model) |
|
|
d_ff = d_model * ffn_mult |
|
|
self.ffn = nn.Sequential( |
|
|
nn.Linear(d_model, d_ff), |
|
|
nn.GELU(), |
|
|
nn.Linear(d_ff, d_model) |
|
|
) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
x = x + self.attn(self.ln1(x), mask) |
|
|
x = x + self.ffn(self.ln2(x)) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class i3Model(nn.Module): |
|
|
def __init__(self, vocab_size, d_model=512, n_heads=16, max_seq_len=256, d_state=32): |
|
|
super().__init__() |
|
|
self.vocab_size = vocab_size |
|
|
self.d_model = d_model |
|
|
self.max_seq_len = max_seq_len |
|
|
|
|
|
self.embed = nn.Embedding(vocab_size, d_model) |
|
|
self.pos_embed = nn.Embedding(max_seq_len, d_model) |
|
|
|
|
|
hybrid_layers = [i3HybridBlock(d_model, d_state=d_state) for _ in range(10)] |
|
|
attention_layers = [i3AttentionBlock(d_model, n_heads=n_heads) for _ in range(6)] |
|
|
self.layers = nn.ModuleList(hybrid_layers + attention_layers) |
|
|
|
|
|
self.ln_f = nn.LayerNorm(d_model) |
|
|
self.head = nn.Linear(d_model, vocab_size) |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
module.weight.data.normal_(0.0, 0.02) |
|
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
|
|
|
def forward(self, idx, targets=None): |
|
|
B, T = idx.shape |
|
|
pos = torch.arange(T, device=idx.device).unsqueeze(0) |
|
|
x = self.embed(idx) + self.pos_embed(pos) |
|
|
mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T) |
|
|
|
|
|
for layer in self.layers: |
|
|
x = layer(x, mask) |
|
|
|
|
|
x = self.ln_f(x) |
|
|
logits = self.head(x) |
|
|
loss = None |
|
|
if targets is not None: |
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) |
|
|
return logits, loss |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
|
for _ in range(max_new_tokens): |
|
|
idx_cond = idx if idx.size(1) <= self.max_seq_len else idx[:, -self.max_seq_len:] |
|
|
logits, _ = self(idx_cond) |
|
|
logits = logits[:, -1, :] / temperature |
|
|
if top_k is not None: |
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
probs = F.softmax(logits, dim=-1) |
|
|
idx_next = torch.multinomial(probs, 1) |
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
return idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChunkTokenizer: |
|
|
def __init__(self, vocab_only=False): |
|
|
self.chunk_to_idx = {} |
|
|
self.idx_to_chunk = {} |
|
|
self.vocab_size = 0 |
|
|
self.unk_token = '<UNK>' |
|
|
self.unk_idx = 0 |
|
|
self.common_trigrams = frozenset({ |
|
|
'the', 'and', 'ing', 'ion', 'tio', 'for', 'tha', |
|
|
'ter', 'hat', 'his', 'ere', 'ent', 'her', 'was', |
|
|
'you', 'are', 'not', 'but', 'can', 'all', 'whi', |
|
|
'one', 'our', 'out', 'whe', 'hav', 'thi', 'wit' |
|
|
}) |
|
|
|
|
|
def _should_use_3char(self, pos, text): |
|
|
if pos + 3 > len(text): |
|
|
return False |
|
|
chunk_3 = text[pos:pos+3] |
|
|
if chunk_3 in self.common_trigrams: |
|
|
return True |
|
|
if pos > 0 and text[pos-1] == ' ': |
|
|
return True |
|
|
if pos + 3 < len(text) and text[pos+3] == ' ': |
|
|
return True |
|
|
return False |
|
|
|
|
|
def encode(self, text): |
|
|
text = text.lower() |
|
|
pos, indices = 0, [] |
|
|
while pos < len(text): |
|
|
chunk_len = 3 if self._should_use_3char(pos, text) else 2 |
|
|
chunk_len = min(chunk_len, len(text) - pos) |
|
|
chunk = text[pos:pos+chunk_len] |
|
|
if chunk in self.chunk_to_idx: |
|
|
indices.append(self.chunk_to_idx[chunk]) |
|
|
else: |
|
|
indices.append(self.unk_idx) |
|
|
pos += chunk_len |
|
|
return indices |
|
|
|
|
|
def decode(self, indices): |
|
|
return ''.join([self.idx_to_chunk.get(int(i), self.unk_token) for i in indices]) |
|
|
|
|
|
def save(self, path): |
|
|
data = { |
|
|
'chunk_to_idx': self.chunk_to_idx, |
|
|
'idx_to_chunk': {int(k): v for k, v in self.idx_to_chunk.items()}, |
|
|
'vocab_size': self.vocab_size, |
|
|
'unk_token': self.unk_token, |
|
|
'unk_idx': self.unk_idx |
|
|
} |
|
|
with open(path, 'w') as f: |
|
|
json.dump(data, f) |
|
|
|
|
|
def load(self, path): |
|
|
with open(path, 'r') as f: |
|
|
data = json.load(f) |
|
|
self.chunk_to_idx = data['chunk_to_idx'] |
|
|
self.idx_to_chunk = {int(k): v for k, v in data['idx_to_chunk'].items()} |
|
|
self.vocab_size = data['vocab_size'] |
|
|
self.unk_token = data.get('unk_token', '<UNK>') |
|
|
self.unk_idx = data.get('unk_idx', 0) |
|
|
|