Text Generation
Transformers
PyTorch
Safetensors
English
i3
i3-architecture
hybrid-model
rwkv-mamba
custom_code
File size: 8,736 Bytes
885e103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os

# ======================================================================
# RWKV-Mamba Hybrid Recurrence
# ======================================================================
class RWKVMambaHybrid(nn.Module):
    def __init__(self, d_model, d_state=64):
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5)
        self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01)
        self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01)
        self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01)
        self.D = nn.Parameter(torch.ones(d_model) * 0.1)

    def forward(self, x):
        B, T, C = x.shape
        h = torch.zeros(B, C, device=x.device)
        s = torch.zeros(B, self.d_state, device=x.device)
        outputs = []

        for t in range(T):
            x_t = x[:, t, :]
            h = self.w_mix * h + (1 - self.w_mix) * x_t
            s = s @ self.A.T + x_t @ self.B.T
            y_t = s @ self.C.T + h * self.D
            outputs.append(y_t)

        return torch.stack(outputs, dim=1)

# ======================================================================
# Full Multi-Head Attention
# ======================================================================
class FullAttention(nn.Module):
    def __init__(self, d_model, n_heads=16):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads
        assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
        self.qkv = nn.Linear(d_model, d_model * 3)
        self.out_proj = nn.Linear(d_model, d_model)

    def forward(self, x, mask=None):
        B, T, C = x.shape
        qkv = self.qkv(x)
        q, k, v = qkv.chunk(3, dim=-1)

        q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)

        attn = (q @ k.transpose(-2, -1)) / (self.head_dim ** 0.5)
        if mask is not None:
            mask = mask.expand(B, self.n_heads, T, T).bool()
            attn = attn.masked_fill(mask == 0, float('-inf'))
        attn = F.softmax(attn, dim=-1)
        out = attn @ v
        out = out.transpose(1, 2).contiguous().view(B, T, C)
        return self.out_proj(out)

# ======================================================================
# i3 Hybrid Block
# ======================================================================
class i3HybridBlock(nn.Module):
    def __init__(self, d_model, d_state=64, ffn_mult=4):
        super().__init__()
        self.ln1 = nn.LayerNorm(d_model)
        self.hybrid = RWKVMambaHybrid(d_model, d_state)
        self.ln2 = nn.LayerNorm(d_model)
        d_ff = d_model * ffn_mult
        self.ffn = nn.Sequential(
            nn.Linear(d_model, d_ff),
            nn.GELU(),
            nn.Linear(d_ff, d_model)
        )

    def forward(self, x, mask=None):
        x = x + self.hybrid(self.ln1(x))
        x = x + self.ffn(self.ln2(x))
        return x

# ======================================================================
# i3 Attention Block
# ======================================================================
class i3AttentionBlock(nn.Module):
    def __init__(self, d_model, n_heads=16, ffn_mult=4):
        super().__init__()
        self.ln1 = nn.LayerNorm(d_model)
        self.attn = FullAttention(d_model, n_heads)
        self.ln2 = nn.LayerNorm(d_model)
        d_ff = d_model * ffn_mult
        self.ffn = nn.Sequential(
            nn.Linear(d_model, d_ff),
            nn.GELU(),
            nn.Linear(d_ff, d_model)
        )

    def forward(self, x, mask=None):
        x = x + self.attn(self.ln1(x), mask)
        x = x + self.ffn(self.ln2(x))
        return x

# ======================================================================
# Full i3 Model
# ======================================================================
class i3Model(nn.Module):
    def __init__(self, vocab_size, d_model=512, n_heads=16, max_seq_len=256, d_state=32):
        super().__init__()
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.max_seq_len = max_seq_len

        self.embed = nn.Embedding(vocab_size, d_model)
        self.pos_embed = nn.Embedding(max_seq_len, d_model)

        hybrid_layers = [i3HybridBlock(d_model, d_state=d_state) for _ in range(10)]
        attention_layers = [i3AttentionBlock(d_model, n_heads=n_heads) for _ in range(6)]
        self.layers = nn.ModuleList(hybrid_layers + attention_layers)

        self.ln_f = nn.LayerNorm(d_model)
        self.head = nn.Linear(d_model, vocab_size)
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(0.0, 0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()

    def forward(self, idx, targets=None):
        B, T = idx.shape
        pos = torch.arange(T, device=idx.device).unsqueeze(0)
        x = self.embed(idx) + self.pos_embed(pos)
        mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T)

        for layer in self.layers:
            x = layer(x, mask)

        x = self.ln_f(x)
        logits = self.head(x)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        return logits, loss

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.max_seq_len else idx[:, -self.max_seq_len:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, 1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx

# ======================================================================
# ChunkTokenizer
# ======================================================================
class ChunkTokenizer:
    def __init__(self, vocab_only=False):
        self.chunk_to_idx = {}
        self.idx_to_chunk = {}
        self.vocab_size = 0
        self.unk_token = '<UNK>'
        self.unk_idx = 0
        self.common_trigrams = frozenset({
            'the', 'and', 'ing', 'ion', 'tio', 'for', 'tha',
            'ter', 'hat', 'his', 'ere', 'ent', 'her', 'was',
            'you', 'are', 'not', 'but', 'can', 'all', 'whi',
            'one', 'our', 'out', 'whe', 'hav', 'thi', 'wit'
        })

    def _should_use_3char(self, pos, text):
        if pos + 3 > len(text):
            return False
        chunk_3 = text[pos:pos+3]
        if chunk_3 in self.common_trigrams:
            return True
        if pos > 0 and text[pos-1] == ' ':
            return True
        if pos + 3 < len(text) and text[pos+3] == ' ':
            return True
        return False

    def encode(self, text):
        text = text.lower()
        pos, indices = 0, []
        while pos < len(text):
            chunk_len = 3 if self._should_use_3char(pos, text) else 2
            chunk_len = min(chunk_len, len(text) - pos)
            chunk = text[pos:pos+chunk_len]
            if chunk in self.chunk_to_idx:
                indices.append(self.chunk_to_idx[chunk])
            else:
                indices.append(self.unk_idx)
            pos += chunk_len
        return indices

    def decode(self, indices):
        return ''.join([self.idx_to_chunk.get(int(i), self.unk_token) for i in indices])

    def save(self, path):
        data = {
            'chunk_to_idx': self.chunk_to_idx,
            'idx_to_chunk': {int(k): v for k, v in self.idx_to_chunk.items()},
            'vocab_size': self.vocab_size,
            'unk_token': self.unk_token,
            'unk_idx': self.unk_idx
        }
        with open(path, 'w') as f:
            json.dump(data, f)

    def load(self, path):
        with open(path, 'r') as f:
            data = json.load(f)
        self.chunk_to_idx = data['chunk_to_idx']
        self.idx_to_chunk = {int(k): v for k, v in data['idx_to_chunk'].items()}
        self.vocab_size = data['vocab_size']
        self.unk_token = data.get('unk_token', '<UNK>')
        self.unk_idx = data.get('unk_idx', 0)