metadata
language: es
datasets: custom
metrics:
- f1
- precision
- recall
- accuracy
tags:
- ner
- named-entity-recognition
- beto
- transformers
- cancer
- salud
- huggingface
model-index:
- name: BETO NER - Cáncer de Próstata (batch_size=4)
results:
- task:
name: Named Entity Recognition
type: token-classification
dataset:
name: Custom dataset - formato BIO
type: medical
description: >
Dataset especializado en anotaciones BIO sobre cáncer de próstata en
español.
metrics:
- name: F1
type: f1
value: 0.9685
- name: Precision
type: precision
value: 0.9671
- name: Recall
type: recall
value: 0.97
- name: Accuracy
type: accuracy
value: 0.9942
Modelo BETO para Reconocimiento de Entidades Nombradas en Cáncer de Próstata
Este modelo se basa en dccuchile/bert-base-spanish-wwm-cased y ha sido ajustado para la tarea de NER (Reconocimiento de Entidades Nombradas) sobre un dataset en español con etiquetas BIO enfocadas en cáncer de próstata.
🧠 Tarea
Reconocimiento de entidades biomédicas relacionadas con el diagnóstico, pruebas y condiciones clínicas del cáncer de próstata.
📊 Rendimiento en conjunto de prueba
| Métrica | Valor |
|---|---|
| F1-score | 0.9685 |
| Precision | 0.9671 |
| Recall | 0.9700 |
| Accuracy | 0.9942 |
⚙️ Uso rápido
from transformers import AutoTokenizer, AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained("FernandoValencia/BETO_prostata_bs4")
tokenizer = AutoTokenizer.from_pretrained("FernandoValencia/BETO_prostata_bs4")
text = "El paciente fue diagnosticado con cáncer de próstata"
tokens = tokenizer(text, return_tensors="pt")
outputs = model(**tokens)