LFM2-8B-A1B-Q4_K_M-GGUF

Just a copy of Q4_K_M version "LiquidAI/LFM2-8B-A1B-GGUF".

With User-Friendly simple commands.

Requirements:

  • linux or stable llama.cpp install with a version newer than 6709.
  • 5 gb vram or ram (cpu is enough)
  • 5 gb disk space

Step-by-step usage

Download Model

Option 1 (fast download speed): 120 mb/s

sudo apt install aria2 -y
aria2c -x 16 -s 16 -k 1M \
  "https://huggingface.co/F-urkan/LFM2-8B-A1B-Q4_K_M-GGUF/resolve/main/LFM2-8B-A1B-Q4_K_M.gguf" \
  -o LFM2-8B-A1B-Q4_K_M.gguf

Option 2 (slow but easy): 10 mb/s

wget https://huggingface.co/F-urkan/LFM2-8B-A1B-Q4_K_M-GGUF/resolve/main/LFM2-8B-A1B-Q4_K_M.gguf

Option 3 (Depend on your browser):

Just click auto download link: link

Get llama.cpp

If your llama.cpp version is newer than b6709 you can skip.

With brew

Install brew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" # if brew is installed you can skip.
export PATH="/home/linuxbrew/.linuxbrew/bin:$PATH"

Install llama.cpp:

brew install llama.cpp

Manual

Prefer that: https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md

Short version:

git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
cmake -B build
cmake --build build --config Release -j
cd build && sudo make install

Run

Server

llama-server -m LFM2-8B-A1B-Q4_K_M.gguf --port 10000 --no-mmap --jinja --temp 0 -c 4096 -ngl 0

Cli

llama-cli -m LFM2-8B-A1B-Q4_K_M.gguf --no-mmap --jinja --temp 0 -c 4096 -ngl 0
Downloads last month
25
GGUF
Model size
8B params
Architecture
lfm2moe
Hardware compatibility
Log In to view the estimation

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for F-urkan/LFM2-8B-A1B-Q4_K_M-GGUF

Quantized
(21)
this model