whisper-large-v3-ft-btb-cv-cvad-ca-wlga-cy-2511
This model is a fine-tuned version of openai/whisper-large-v3 on the techiaith/banc-trawsgrifiadau-bangor train 25.10, techiaith/corpws-clllc-wlga clips main, techiaith/commonvoice_23_0_cy train+dev+other_with_excluded main, cymen-arfor/lleisiau-arfor train+dev main, techiaith/commonvoice_vad_cy train main dataset. It achieves the following results on the evaluation set:
- Loss: 0.3635
- Wer: 0.2736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.5932 | 0.2523 | 500 | 0.5774 | 0.4085 |
| 0.491 | 0.5047 | 1000 | 0.4778 | 0.3715 |
| 0.4394 | 0.7570 | 1500 | 0.4366 | 0.3477 |
| 0.3786 | 1.0091 | 2000 | 0.4134 | 0.3097 |
| 0.3156 | 1.2614 | 2500 | 0.3972 | 0.3006 |
| 0.3094 | 1.5138 | 3000 | 0.3822 | 0.3114 |
| 0.2971 | 1.7661 | 3500 | 0.3710 | 0.2953 |
| 0.2295 | 2.0182 | 4000 | 0.3697 | 0.2828 |
| 0.2038 | 2.2705 | 4500 | 0.3679 | 0.2814 |
| 0.2049 | 2.5228 | 5000 | 0.3650 | 0.2791 |
| 0.2011 | 2.7752 | 5500 | 0.3635 | 0.2765 |
| 0.1793 | 3.0273 | 6000 | 0.3635 | 0.2731 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.9.0+cu128
- Datasets 4.4.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for DewiBrynJones/whisper-large-v3-ft-btb-cv-cvad-ca-wlga-cy-2511
Base model
openai/whisper-large-v3