Tigre-xlm-roberta-base
This model is a multilingual masked language model (MLM) based on XLM-RoBERTa, fine-tuned on diverse linguistic data with a strong focus on Tigre (tig_Ethi). It supports multiple languages, including:
[tig_Ethi]Tigre[tir_Ethi]Tigrinya[amh_Ethi]Amharic[gez_Ethi]Ge'ez[ara_Arab]Arabic[eng_Latn]English[deu_Latn]German[swe_Latn]Swedish[nno_Latn],[nob_Latn]Norwegian
Usage
The model is designed for masked language modeling β predicting missing words in a sentence. Use it to:
- Fill in blanks in multilingual text
- Study language understanding in low-resource languages
- Build downstream tools for Tigre and related languages
Example (Python)
from transformers import AutoTokenizer, XLMRobertaForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("BeitTigreAI/tigre-xlm-roberta-base")
model = XLMRobertaForMaskedLM.from_pretrained("BeitTigreAI/tigre-xlm-roberta-base")
text = "[tig_Ethi] αααα α₯α©α α₯α΅ <mask>"
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
mask_token_index = (inputs.input_ids[0] == tokenizer.mask_token_id).nonzero().item()
predicted_token_id = logits[0, mask_token_index].argmax(-1)
predicted_word = tokenizer.decode([predicted_token_id])
print(predicted_word) # Output: likely a word like "α€α΅" (home)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for BeitTigreAI/tigre-xlm-roberta-base
Base model
FacebookAI/xlm-roberta-base