🧠 Brain Stroke Classification using VGG19 Transfer Learning

License: MIT TensorFlow Keras Dataset

A high-accuracy image classification model trained on medical brain scans using VGG19 (ImageNet pretrained) to distinguish different stroke types. Achieves 89% accuracy on the Teknofest 2021 Brain Stroke dataset.


πŸš€ Highlights

  • βœ… Transfer learning with VGG19
  • 🧠 Medical image classification for stroke diagnosis
  • πŸ“Š Accuracy: 89%, F1-Score: 88%
  • πŸ”¬ Trained on colorized brain stroke CT/MRI images
  • πŸ“ Dataset: Teknofest 2021, Kaggle

πŸ“‚ Dataset


πŸ—οΈ Model Details

  • Base: VGG19 with frozen early layers
  • Custom Head: Dense, Dropout, Softmax
  • Optimizer: Adam | Loss: Sparse Categorical Crossentropy
  • Input Size: 250x250 | Framework: Keras + TensorFlow 2.x

πŸ“ˆ Performance Metrics

Metric Value
Accuracy 89%
F1-Score 88%
Precision 87%
Recall 88%

πŸ§ͺ Usage

This model is ready for integration into clinical AI pipelines or academic research.
To load the .h5 file and run predictions, refer to example notebook β†— (see predict.py or notebooks/).


πŸ“‹ License

MIT License – free to use, modify, and distribute.


πŸ‘€ Author

Ajay Vasan S
Machine Learning Engineer
πŸ”— GitHub | πŸ“§ LinkedIn


πŸ“‚ GitHub Project: AjayVasan/Brain-Stroke-Predictor


⭐ Star this repo if it helped you β€” and feel free to open issues for feedback!

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results

  • accuracy on Brain Stroke Colorized Dataset - Teknofest 2021
    self-reported
    0.890
  • f1 on Brain Stroke Colorized Dataset - Teknofest 2021
    self-reported
    0.880
  • precision on Brain Stroke Colorized Dataset - Teknofest 2021
    self-reported
    0.870
  • recall on Brain Stroke Colorized Dataset - Teknofest 2021
    self-reported
    0.880