import torch import random from pipeline_flux import FluxPipeline # use our modifed flux pipeline to ensure close-loop. lora_path="lora_hubs/pano_lora_720*1440_v1.safetensors" # download panorama lora in our huggingface repo and replace it to your path. pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda") pipe.load_lora_weights(lora_path) # change this. pipe.enable_model_cpu_offload() # save some VRAM by offloading the model to CPU prompt = 'A vibrant city avenue, bustling traffic, towering skyscrapers' pipe.enable_vae_tiling() seed = 119223 #Select the same resolution as LoRA for inference image = pipe(prompt, height=720, width=1440, generator=torch.Generator("cpu").manual_seed(seed), num_inference_steps=50, blend_extend=6, guidance_scale=7).images[0] image.save("result.png")