--- base_model: sentence-transformers/all-MiniLM-L6-v2 language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:9023897 - loss:CoSENTLoss widget: - source_sentence: skin care set sentences: - doormat - electronic game - wet cat food - source_sentence: cns medicine sentences: - hair mask - anti-infective medicine - allergy medicine - source_sentence: face toner sentences: - eye treatment - haircare set - baby mattress - source_sentence: baby swing sentences: - acne - escalope - lens solution - source_sentence: face treatment sentences: - robot - sanitizer - hair dye --- # all-MiniLM-L6-v21-pair_score This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'face treatment', 'sanitizer', 'robot', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0014 | 100 | 13.1926 | | 0.0028 | 200 | 12.7965 | | 0.0043 | 300 | 13.0186 | | 0.0057 | 400 | 12.592 | | 0.0071 | 500 | 12.1638 | | 0.0085 | 600 | 11.8915 | | 0.0099 | 700 | 11.3471 | | 0.0113 | 800 | 10.7371 | | 0.0128 | 900 | 10.3852 | | 0.0142 | 1000 | 10.063 | | 0.0156 | 1100 | 9.8313 | | 0.0170 | 1200 | 9.4219 | | 0.0184 | 1300 | 9.1946 | | 0.0199 | 1400 | 8.9783 | | 0.0213 | 1500 | 8.7999 | | 0.0227 | 1600 | 8.6779 | | 0.0241 | 1700 | 8.6218 | | 0.0255 | 1800 | 8.5675 | | 0.0270 | 1900 | 8.5168 | | 0.0284 | 2000 | 8.4996 | | 0.0298 | 2100 | 8.4476 | | 0.0312 | 2200 | 8.4191 | | 0.0326 | 2300 | 8.406 | | 0.0340 | 2400 | 8.386 | | 0.0355 | 2500 | 8.3749 | | 0.0369 | 2600 | 8.3491 | | 0.0383 | 2700 | 8.3128 | | 0.0397 | 2800 | 8.3038 | | 0.0411 | 2900 | 8.3037 | | 0.0426 | 3000 | 8.2735 | | 0.0440 | 3100 | 8.2638 | | 0.0454 | 3200 | 8.2546 | | 0.0468 | 3300 | 8.2439 | | 0.0482 | 3400 | 8.2059 | | 0.0496 | 3500 | 8.2128 | | 0.0511 | 3600 | 8.1799 | | 0.0525 | 3700 | 8.1863 | | 0.0539 | 3800 | 8.1623 | | 0.0553 | 3900 | 8.1668 | | 0.0567 | 4000 | 8.1375 | | 0.0582 | 4100 | 8.1484 | | 0.0596 | 4200 | 8.1301 | | 0.0610 | 4300 | 8.1205 | | 0.0624 | 4400 | 8.132 | | 0.0638 | 4500 | 8.1021 | | 0.0652 | 4600 | 8.0993 | | 0.0667 | 4700 | 8.0933 | | 0.0681 | 4800 | 8.0866 | | 0.0695 | 4900 | 8.0852 | | 0.0709 | 5000 | 8.0674 | | 0.0723 | 5100 | 8.0485 | | 0.0738 | 5200 | 8.0453 | | 0.0752 | 5300 | 8.0494 | | 0.0766 | 5400 | 8.0396 | | 0.0780 | 5500 | 8.0254 | | 0.0794 | 5600 | 8.0223 | | 0.0809 | 5700 | 8.0241 | | 0.0823 | 5800 | 8.0161 | | 0.0837 | 5900 | 7.9888 | | 0.0851 | 6000 | 8.0131 | | 0.0865 | 6100 | 7.9777 | | 0.0879 | 6200 | 8.0133 | | 0.0894 | 6300 | 7.9891 | | 0.0908 | 6400 | 7.9665 | | 0.0922 | 6500 | 7.9621 | | 0.0936 | 6600 | 7.9568 | | 0.0950 | 6700 | 7.9671 | | 0.0965 | 6800 | 7.9379 | | 0.0979 | 6900 | 7.9467 | | 0.0993 | 7000 | 7.954 | | 0.1007 | 7100 | 7.9413 | | 0.1021 | 7200 | 7.9499 | | 0.1035 | 7300 | 7.9286 | | 0.1050 | 7400 | 7.9186 | | 0.1064 | 7500 | 7.945 | | 0.1078 | 7600 | 7.9161 | | 0.1092 | 7700 | 7.9335 | | 0.1106 | 7800 | 7.8967 | | 0.1121 | 7900 | 7.899 | | 0.1135 | 8000 | 7.914 | | 0.1149 | 8100 | 7.8768 | | 0.1163 | 8200 | 7.8898 | | 0.1177 | 8300 | 7.8854 | | 0.1191 | 8400 | 7.8742 | | 0.1206 | 8500 | 7.8869 | | 0.1220 | 8600 | 7.8585 | | 0.1234 | 8700 | 7.8731 | | 0.1248 | 8800 | 7.8791 | | 0.1262 | 8900 | 7.8838 | | 0.1277 | 9000 | 7.8344 | | 0.1291 | 9100 | 7.8813 | | 0.1305 | 9200 | 7.8482 | | 0.1319 | 9300 | 7.8605 | | 0.1333 | 9400 | 7.84 | | 0.1348 | 9500 | 7.8331 | | 0.1362 | 9600 | 7.8232 | | 0.1376 | 9700 | 7.8043 | | 0.1390 | 9800 | 7.8339 | | 0.1404 | 9900 | 7.8262 | | 0.1418 | 10000 | 7.8093 | | 0.1433 | 10100 | 7.8055 | | 0.1447 | 10200 | 7.8286 | | 0.1461 | 10300 | 7.7943 | | 0.1475 | 10400 | 7.8559 | | 0.1489 | 10500 | 7.8121 | | 0.1504 | 10600 | 7.7787 | | 0.1518 | 10700 | 7.8017 | | 0.1532 | 10800 | 7.7884 | | 0.1546 | 10900 | 7.7895 | | 0.1560 | 11000 | 7.7691 | | 0.1574 | 11100 | 7.7967 | | 0.1589 | 11200 | 7.8325 | | 0.1603 | 11300 | 7.7863 | | 0.1617 | 11400 | 7.818 | | 0.1631 | 11500 | 7.8287 | | 0.1645 | 11600 | 7.7717 | | 0.1660 | 11700 | 7.7722 | | 0.1674 | 11800 | 7.783 | | 0.1688 | 11900 | 7.7608 | | 0.1702 | 12000 | 7.7524 | | 0.1716 | 12100 | 7.7639 | | 0.1730 | 12200 | 7.731 | | 0.1745 | 12300 | 7.7499 | | 0.1759 | 12400 | 7.7599 | | 0.1773 | 12500 | 7.7632 | | 0.1787 | 12600 | 7.7825 | | 0.1801 | 12700 | 7.7823 | | 0.1816 | 12800 | 7.7447 | | 0.1830 | 12900 | 7.7455 | | 0.1844 | 13000 | 7.7233 | | 0.1858 | 13100 | 7.7437 | | 0.1872 | 13200 | 7.7554 | | 0.1887 | 13300 | 7.7031 | | 0.1901 | 13400 | 7.7725 | | 0.1915 | 13500 | 7.7337 | | 0.1929 | 13600 | 7.7325 | | 0.1943 | 13700 | 7.7488 | | 0.1957 | 13800 | 7.7266 | | 0.1972 | 13900 | 7.6917 | | 0.1986 | 14000 | 7.6886 | | 0.2 | 14100 | 7.6839 | | 0.2014 | 14200 | 7.6947 | | 0.2028 | 14300 | 7.7174 | | 0.2043 | 14400 | 7.6882 | | 0.2057 | 14500 | 7.7202 | | 0.2071 | 14600 | 7.7566 | | 0.2085 | 14700 | 7.699 | | 0.2099 | 14800 | 7.702 | | 0.2113 | 14900 | 7.671 | | 0.2128 | 15000 | 7.687 | | 0.2142 | 15100 | 7.7349 | | 0.2156 | 15200 | 7.7308 | | 0.2170 | 15300 | 7.6846 | | 0.2184 | 15400 | 7.6872 | | 0.2199 | 15500 | 7.6688 | | 0.2213 | 15600 | 7.7193 | | 0.2227 | 15700 | 7.6603 | | 0.2241 | 15800 | 7.7124 | | 0.2255 | 15900 | 7.658 | | 0.2270 | 16000 | 7.708 | | 0.2284 | 16100 | 7.6993 | | 0.2298 | 16200 | 7.6786 | | 0.2312 | 16300 | 7.6509 | | 0.2326 | 16400 | 7.6592 | | 0.2340 | 16500 | 7.6347 | | 0.2355 | 16600 | 7.6557 | | 0.2369 | 16700 | 7.6833 | | 0.2383 | 16800 | 7.6439 | | 0.2397 | 16900 | 7.6878 | | 0.2411 | 17000 | 7.6573 | | 0.2426 | 17100 | 7.6726 | | 0.2440 | 17200 | 7.6749 | | 0.2454 | 17300 | 7.6618 | | 0.2468 | 17400 | 7.6341 | | 0.2482 | 17500 | 7.692 | | 0.2496 | 17600 | 7.6604 | | 0.2511 | 17700 | 7.6435 | | 0.2525 | 17800 | 7.6627 | | 0.2539 | 17900 | 7.6613 | | 0.2553 | 18000 | 7.631 | | 0.2567 | 18100 | 7.6401 | | 0.2582 | 18200 | 7.6423 | | 0.2596 | 18300 | 7.6891 | | 0.2610 | 18400 | 7.6624 | | 0.2624 | 18500 | 7.6234 | | 0.2638 | 18600 | 7.6601 | | 0.2652 | 18700 | 7.6392 | | 0.2667 | 18800 | 7.6069 | | 0.2681 | 18900 | 7.6199 | | 0.2695 | 19000 | 7.6209 | | 0.2709 | 19100 | 7.5967 | | 0.2723 | 19200 | 7.6222 | | 0.2738 | 19300 | 7.6262 | | 0.2752 | 19400 | 7.6529 | | 0.2766 | 19500 | 7.5978 | | 0.2780 | 19600 | 7.6217 | | 0.2794 | 19700 | 7.6253 | | 0.2809 | 19800 | 7.6321 | | 0.2823 | 19900 | 7.6352 | | 0.2837 | 20000 | 7.6366 | | 0.2851 | 20100 | 7.6022 | | 0.2865 | 20200 | 7.5817 | | 0.2879 | 20300 | 7.642 | | 0.2894 | 20400 | 7.6274 | | 0.2908 | 20500 | 7.6394 | | 0.2922 | 20600 | 7.6288 | | 0.2936 | 20700 | 7.6059 | | 0.2950 | 20800 | 7.6016 | | 0.2965 | 20900 | 7.6527 | | 0.2979 | 21000 | 7.6101 | | 0.2993 | 21100 | 7.537 | | 0.3007 | 21200 | 7.5946 | | 0.3021 | 21300 | 7.5853 | | 0.3035 | 21400 | 7.6598 | | 0.3050 | 21500 | 7.6054 | | 0.3064 | 21600 | 7.5602 | | 0.3078 | 21700 | 7.6165 | | 0.3092 | 21800 | 7.5782 | | 0.3106 | 21900 | 7.6019 | | 0.3121 | 22000 | 7.5393 | | 0.3135 | 22100 | 7.5868 | | 0.3149 | 22200 | 7.6434 | | 0.3163 | 22300 | 7.5713 | | 0.3177 | 22400 | 7.6273 | | 0.3191 | 22500 | 7.5923 | | 0.3206 | 22600 | 7.5879 | | 0.3220 | 22700 | 7.5742 | | 0.3234 | 22800 | 7.5607 | | 0.3248 | 22900 | 7.6186 | | 0.3262 | 23000 | 7.5912 | | 0.3277 | 23100 | 7.5993 | | 0.3291 | 23200 | 7.5842 | | 0.3305 | 23300 | 7.6018 | | 0.3319 | 23400 | 7.546 | | 0.3333 | 23500 | 7.5828 | | 0.3348 | 23600 | 7.5476 | | 0.3362 | 23700 | 7.5416 | | 0.3376 | 23800 | 7.5567 | | 0.3390 | 23900 | 7.56 | | 0.3404 | 24000 | 7.5953 | | 0.3418 | 24100 | 7.5539 | | 0.3433 | 24200 | 7.6377 | | 0.3447 | 24300 | 7.5183 | | 0.3461 | 24400 | 7.5869 | | 0.3475 | 24500 | 7.5998 | | 0.3489 | 24600 | 7.5344 | | 0.3504 | 24700 | 7.5907 | | 0.3518 | 24800 | 7.5223 | | 0.3532 | 24900 | 7.5677 | | 0.3546 | 25000 | 7.5836 | | 0.3560 | 25100 | 7.6285 | | 0.3574 | 25200 | 7.577 | | 0.3589 | 25300 | 7.5204 | | 0.3603 | 25400 | 7.6041 | | 0.3617 | 25500 | 7.5132 | | 0.3631 | 25600 | 7.6004 | | 0.3645 | 25700 | 7.618 | | 0.3660 | 25800 | 7.5518 | | 0.3674 | 25900 | 7.5001 | | 0.3688 | 26000 | 7.5266 | | 0.3702 | 26100 | 7.5333 | | 0.3716 | 26200 | 7.6075 | | 0.3730 | 26300 | 7.5061 | | 0.3745 | 26400 | 7.5303 | | 0.3759 | 26500 | 7.5301 | | 0.3773 | 26600 | 7.5022 | | 0.3787 | 26700 | 7.5075 | | 0.3801 | 26800 | 7.5522 | | 0.3816 | 26900 | 7.5112 | | 0.3830 | 27000 | 7.5784 | | 0.3844 | 27100 | 7.5146 | | 0.3858 | 27200 | 7.5445 | | 0.3872 | 27300 | 7.5492 | | 0.3887 | 27400 | 7.4975 | | 0.3901 | 27500 | 7.5075 | | 0.3915 | 27600 | 7.5115 | | 0.3929 | 27700 | 7.4821 | | 0.3943 | 27800 | 7.5776 | | 0.3957 | 27900 | 7.5531 | | 0.3972 | 28000 | 7.6073 | | 0.3986 | 28100 | 7.5666 | | 0.4 | 28200 | 7.5001 | | 0.4014 | 28300 | 7.5225 | | 0.4028 | 28400 | 7.5137 | | 0.4043 | 28500 | 7.5351 | | 0.4057 | 28600 | 7.4937 | | 0.4071 | 28700 | 7.5395 | | 0.4085 | 28800 | 7.4923 | | 0.4099 | 28900 | 7.5133 | | 0.4113 | 29000 | 7.4948 | | 0.4128 | 29100 | 7.5055 | | 0.4142 | 29200 | 7.5511 | | 0.4156 | 29300 | 7.5725 | | 0.4170 | 29400 | 7.6092 | | 0.4184 | 29500 | 7.5414 | | 0.4199 | 29600 | 7.5168 | | 0.4213 | 29700 | 7.5362 | | 0.4227 | 29800 | 7.5131 | | 0.4241 | 29900 | 7.5356 | | 0.4255 | 30000 | 7.5324 | | 0.4270 | 30100 | 7.5002 | | 0.4284 | 30200 | 7.5711 | | 0.4298 | 30300 | 7.5307 | | 0.4312 | 30400 | 7.5115 | | 0.4326 | 30500 | 7.535 | | 0.4340 | 30600 | 7.4797 | | 0.4355 | 30700 | 7.4996 | | 0.4369 | 30800 | 7.5144 | | 0.4383 | 30900 | 7.6262 | | 0.4397 | 31000 | 7.5492 | | 0.4411 | 31100 | 7.5129 | | 0.4426 | 31200 | 7.4567 | | 0.4440 | 31300 | 7.462 | | 0.4454 | 31400 | 7.4654 | | 0.4468 | 31500 | 7.5414 | | 0.4482 | 31600 | 7.5087 | | 0.4496 | 31700 | 7.4987 | | 0.4511 | 31800 | 7.5223 | | 0.4525 | 31900 | 7.5589 | | 0.4539 | 32000 | 7.5093 | | 0.4553 | 32100 | 7.5167 | | 0.4567 | 32200 | 7.4632 | | 0.4582 | 32300 | 7.4998 | | 0.4596 | 32400 | 7.4559 | | 0.4610 | 32500 | 7.4844 | | 0.4624 | 32600 | 7.586 | | 0.4638 | 32700 | 7.5281 | | 0.4652 | 32800 | 7.4701 | | 0.4667 | 32900 | 7.4929 | | 0.4681 | 33000 | 7.5465 | | 0.4695 | 33100 | 7.506 | | 0.4709 | 33200 | 7.5596 | | 0.4723 | 33300 | 7.4181 | | 0.4738 | 33400 | 7.5174 | | 0.4752 | 33500 | 7.487 | | 0.4766 | 33600 | 7.523 | | 0.4780 | 33700 | 7.4432 | | 0.4794 | 33800 | 7.5235 | | 0.4809 | 33900 | 7.4662 | | 0.4823 | 34000 | 7.527 | | 0.4837 | 34100 | 7.5106 | | 0.4851 | 34200 | 7.5687 | | 0.4865 | 34300 | 7.4932 | | 0.4879 | 34400 | 7.5147 | | 0.4894 | 34500 | 7.5173 | | 0.4908 | 34600 | 7.528 | | 0.4922 | 34700 | 7.5241 | | 0.4936 | 34800 | 7.4627 | | 0.4950 | 34900 | 7.4977 | | 0.4965 | 35000 | 7.475 | | 0.4979 | 35100 | 7.425 | | 0.4993 | 35200 | 7.5461 | | 0.5007 | 35300 | 7.4329 | | 0.5021 | 35400 | 7.4677 | | 0.5035 | 35500 | 7.446 | | 0.5050 | 35600 | 7.5136 | | 0.5064 | 35700 | 7.499 | | 0.5078 | 35800 | 7.4542 | | 0.5092 | 35900 | 7.5076 | | 0.5106 | 36000 | 7.5057 | | 0.5121 | 36100 | 7.4773 | | 0.5135 | 36200 | 7.4421 | | 0.5149 | 36300 | 7.4906 | | 0.5163 | 36400 | 7.3963 | | 0.5177 | 36500 | 7.468 | | 0.5191 | 36600 | 7.512 | | 0.5206 | 36700 | 7.4673 | | 0.5220 | 36800 | 7.4828 | | 0.5234 | 36900 | 7.5092 | | 0.5248 | 37000 | 7.4725 | | 0.5262 | 37100 | 7.5191 | | 0.5277 | 37200 | 7.4546 | | 0.5291 | 37300 | 7.5097 | | 0.5305 | 37400 | 7.4875 | | 0.5319 | 37500 | 7.518 | | 0.5333 | 37600 | 7.4315 | | 0.5348 | 37700 | 7.4724 | | 0.5362 | 37800 | 7.4255 | | 0.5376 | 37900 | 7.4805 | | 0.5390 | 38000 | 7.5031 | | 0.5404 | 38100 | 7.4222 | | 0.5418 | 38200 | 7.4945 | | 0.5433 | 38300 | 7.4264 | | 0.5447 | 38400 | 7.4426 | | 0.5461 | 38500 | 7.4948 | | 0.5475 | 38600 | 7.4579 | | 0.5489 | 38700 | 7.4756 | | 0.5504 | 38800 | 7.6029 | | 0.5518 | 38900 | 7.4873 | | 0.5532 | 39000 | 7.4669 | | 0.5546 | 39100 | 7.4513 | | 0.5560 | 39200 | 7.4522 | | 0.5574 | 39300 | 7.4544 | | 0.5589 | 39400 | 7.4581 | | 0.5603 | 39500 | 7.4162 | | 0.5617 | 39600 | 7.4203 | | 0.5631 | 39700 | 7.4348 | | 0.5645 | 39800 | 7.4467 | | 0.5660 | 39900 | 7.407 | | 0.5674 | 40000 | 7.4431 | | 0.5688 | 40100 | 7.4367 | | 0.5702 | 40200 | 7.4587 | | 0.5716 | 40300 | 7.3733 | | 0.5730 | 40400 | 7.5482 | | 0.5745 | 40500 | 7.456 | | 0.5759 | 40600 | 7.5009 | | 0.5773 | 40700 | 7.5035 | | 0.5787 | 40800 | 7.4635 | | 0.5801 | 40900 | 7.4623 | | 0.5816 | 41000 | 7.4451 | | 0.5830 | 41100 | 7.4141 | | 0.5844 | 41200 | 7.4855 | | 0.5858 | 41300 | 7.406 | | 0.5872 | 41400 | 7.4292 | | 0.5887 | 41500 | 7.494 | | 0.5901 | 41600 | 7.4258 | | 0.5915 | 41700 | 7.4412 | | 0.5929 | 41800 | 7.4179 | | 0.5943 | 41900 | 7.4424 | | 0.5957 | 42000 | 7.4882 | | 0.5972 | 42100 | 7.4944 | | 0.5986 | 42200 | 7.3424 | | 0.6 | 42300 | 7.5249 | | 0.6014 | 42400 | 7.413 | | 0.6028 | 42500 | 7.4411 | | 0.6043 | 42600 | 7.4715 | | 0.6057 | 42700 | 7.4828 | | 0.6071 | 42800 | 7.5002 | | 0.6085 | 42900 | 7.463 | | 0.6099 | 43000 | 7.3597 | | 0.6113 | 43100 | 7.4367 | | 0.6128 | 43200 | 7.5433 | | 0.6142 | 43300 | 7.4771 | | 0.6156 | 43400 | 7.4954 | | 0.6170 | 43500 | 7.4272 | | 0.6184 | 43600 | 7.4325 | | 0.6199 | 43700 | 7.4745 | | 0.6213 | 43800 | 7.4508 | | 0.6227 | 43900 | 7.3977 | | 0.6241 | 44000 | 7.5164 | | 0.6255 | 44100 | 7.4729 | | 0.6270 | 44200 | 7.5065 | | 0.6284 | 44300 | 7.483 | | 0.6298 | 44400 | 7.438 | | 0.6312 | 44500 | 7.4311 | | 0.6326 | 44600 | 7.4824 | | 0.6340 | 44700 | 7.4421 | | 0.6355 | 44800 | 7.47 | | 0.6369 | 44900 | 7.3865 | | 0.6383 | 45000 | 7.4264 | | 0.6397 | 45100 | 7.4468 | | 0.6411 | 45200 | 7.3725 | | 0.6426 | 45300 | 7.3888 | | 0.6440 | 45400 | 7.4234 | | 0.6454 | 45500 | 7.4253 | | 0.6468 | 45600 | 7.4953 | | 0.6482 | 45700 | 7.451 | | 0.6496 | 45800 | 7.4424 | | 0.6511 | 45900 | 7.3959 | | 0.6525 | 46000 | 7.4706 | | 0.6539 | 46100 | 7.4002 | | 0.6553 | 46200 | 7.3839 | | 0.6567 | 46300 | 7.4296 | | 0.6582 | 46400 | 7.4449 | | 0.6596 | 46500 | 7.3793 | | 0.6610 | 46600 | 7.463 | | 0.6624 | 46700 | 7.4034 | | 0.6638 | 46800 | 7.4178 | | 0.6652 | 46900 | 7.4174 | | 0.6667 | 47000 | 7.4481 | | 0.6681 | 47100 | 7.5285 | | 0.6695 | 47200 | 7.3878 | | 0.6709 | 47300 | 7.3894 | | 0.6723 | 47400 | 7.4658 | | 0.6738 | 47500 | 7.4161 | | 0.6752 | 47600 | 7.4127 | | 0.6766 | 47700 | 7.4215 | | 0.6780 | 47800 | 7.3838 | | 0.6794 | 47900 | 7.4643 | | 0.6809 | 48000 | 7.4168 | | 0.6823 | 48100 | 7.4078 | | 0.6837 | 48200 | 7.4339 | | 0.6851 | 48300 | 7.3993 | | 0.6865 | 48400 | 7.4831 | | 0.6879 | 48500 | 7.4778 | | 0.6894 | 48600 | 7.4498 | | 0.6908 | 48700 | 7.3906 | | 0.6922 | 48800 | 7.4844 | | 0.6936 | 48900 | 7.4273 | | 0.6950 | 49000 | 7.402 | | 0.6965 | 49100 | 7.4395 | | 0.6979 | 49200 | 7.3888 | | 0.6993 | 49300 | 7.372 | | 0.7007 | 49400 | 7.4587 | | 0.7021 | 49500 | 7.5481 | | 0.7035 | 49600 | 7.4094 | | 0.7050 | 49700 | 7.4186 | | 0.7064 | 49800 | 7.3886 | | 0.7078 | 49900 | 7.3778 | | 0.7092 | 50000 | 7.4144 | | 0.7106 | 50100 | 7.4409 | | 0.7121 | 50200 | 7.4089 | | 0.7135 | 50300 | 7.4795 | | 0.7149 | 50400 | 7.3671 | | 0.7163 | 50500 | 7.4154 | | 0.7177 | 50600 | 7.4991 | | 0.7191 | 50700 | 7.4587 | | 0.7206 | 50800 | 7.4723 | | 0.7220 | 50900 | 7.3638 | | 0.7234 | 51000 | 7.3765 | | 0.7248 | 51100 | 7.3947 | | 0.7262 | 51200 | 7.4181 | | 0.7277 | 51300 | 7.3822 | | 0.7291 | 51400 | 7.4111 | | 0.7305 | 51500 | 7.4081 | | 0.7319 | 51600 | 7.4102 | | 0.7333 | 51700 | 7.4177 | | 0.7348 | 51800 | 7.4462 | | 0.7362 | 51900 | 7.3557 | | 0.7376 | 52000 | 7.4572 | | 0.7390 | 52100 | 7.4117 | | 0.7404 | 52200 | 7.4284 | | 0.7418 | 52300 | 7.4234 | | 0.7433 | 52400 | 7.3917 | | 0.7447 | 52500 | 7.3467 | | 0.7461 | 52600 | 7.3821 | | 0.7475 | 52700 | 7.4541 | | 0.7489 | 52800 | 7.4189 | | 0.7504 | 52900 | 7.4509 | | 0.7518 | 53000 | 7.3829 | | 0.7532 | 53100 | 7.3373 | | 0.7546 | 53200 | 7.3314 | | 0.7560 | 53300 | 7.4043 | | 0.7574 | 53400 | 7.4792 | | 0.7589 | 53500 | 7.4152 | | 0.7603 | 53600 | 7.404 | | 0.7617 | 53700 | 7.4486 | | 0.7631 | 53800 | 7.3498 | | 0.7645 | 53900 | 7.3969 | | 0.7660 | 54000 | 7.3918 | | 0.7674 | 54100 | 7.3876 | | 0.7688 | 54200 | 7.3964 | | 0.7702 | 54300 | 7.4086 | | 0.7716 | 54400 | 7.416 | | 0.7730 | 54500 | 7.4601 | | 0.7745 | 54600 | 7.37 | | 0.7759 | 54700 | 7.4409 | | 0.7773 | 54800 | 7.3761 | | 0.7787 | 54900 | 7.3773 | | 0.7801 | 55000 | 7.4095 | | 0.7816 | 55100 | 7.415 | | 0.7830 | 55200 | 7.417 | | 0.7844 | 55300 | 7.3764 | | 0.7858 | 55400 | 7.4076 | | 0.7872 | 55500 | 7.4049 | | 0.7887 | 55600 | 7.3818 | | 0.7901 | 55700 | 7.366 | | 0.7915 | 55800 | 7.398 | | 0.7929 | 55900 | 7.427 | | 0.7943 | 56000 | 7.3833 | | 0.7957 | 56100 | 7.3616 | | 0.7972 | 56200 | 7.396 | | 0.7986 | 56300 | 7.3264 | | 0.8 | 56400 | 7.4165 | | 0.8014 | 56500 | 7.5058 | | 0.8028 | 56600 | 7.3736 | | 0.8043 | 56700 | 7.3962 | | 0.8057 | 56800 | 7.384 | | 0.8071 | 56900 | 7.3815 | | 0.8085 | 57000 | 7.3507 | | 0.8099 | 57100 | 7.3604 | | 0.8113 | 57200 | 7.4224 | | 0.8128 | 57300 | 7.3843 | | 0.8142 | 57400 | 7.4532 | | 0.8156 | 57500 | 7.4106 | | 0.8170 | 57600 | 7.3154 | | 0.8184 | 57700 | 7.4465 | | 0.8199 | 57800 | 7.378 | | 0.8213 | 57900 | 7.4425 | | 0.8227 | 58000 | 7.381 | | 0.8241 | 58100 | 7.3555 | | 0.8255 | 58200 | 7.3051 | | 0.8270 | 58300 | 7.4611 | | 0.8284 | 58400 | 7.3804 | | 0.8298 | 58500 | 7.4109 | | 0.8312 | 58600 | 7.3147 | | 0.8326 | 58700 | 7.3951 | | 0.8340 | 58800 | 7.3367 | | 0.8355 | 58900 | 7.4197 | | 0.8369 | 59000 | 7.3802 | | 0.8383 | 59100 | 7.4018 | | 0.8397 | 59200 | 7.3135 | | 0.8411 | 59300 | 7.3565 | | 0.8426 | 59400 | 7.3591 | | 0.8440 | 59500 | 7.4112 | | 0.8454 | 59600 | 7.4384 | | 0.8468 | 59700 | 7.4535 | | 0.8482 | 59800 | 7.2803 | | 0.8496 | 59900 | 7.3927 | | 0.8511 | 60000 | 7.3394 | | 0.8525 | 60100 | 7.376 | | 0.8539 | 60200 | 7.4899 | | 0.8553 | 60300 | 7.3667 | | 0.8567 | 60400 | 7.3682 | | 0.8582 | 60500 | 7.482 | | 0.8596 | 60600 | 7.4628 | | 0.8610 | 60700 | 7.4207 | | 0.8624 | 60800 | 7.3217 | | 0.8638 | 60900 | 7.514 | | 0.8652 | 61000 | 7.4524 | | 0.8667 | 61100 | 7.3489 | | 0.8681 | 61200 | 7.3895 | | 0.8695 | 61300 | 7.3907 | | 0.8709 | 61400 | 7.3386 | | 0.8723 | 61500 | 7.3769 | | 0.8738 | 61600 | 7.3689 | | 0.8752 | 61700 | 7.3252 | | 0.8766 | 61800 | 7.3877 | | 0.8780 | 61900 | 7.3726 | | 0.8794 | 62000 | 7.3994 | | 0.8809 | 62100 | 7.3763 | | 0.8823 | 62200 | 7.4137 | | 0.8837 | 62300 | 7.3515 | | 0.8851 | 62400 | 7.3949 | | 0.8865 | 62500 | 7.3789 | | 0.8879 | 62600 | 7.3886 | | 0.8894 | 62700 | 7.3787 | | 0.8908 | 62800 | 7.3959 | | 0.8922 | 62900 | 7.3803 | | 0.8936 | 63000 | 7.4508 | | 0.8950 | 63100 | 7.3858 | | 0.8965 | 63200 | 7.361 | | 0.8979 | 63300 | 7.3594 | | 0.8993 | 63400 | 7.4251 | | 0.9007 | 63500 | 7.3099 | | 0.9021 | 63600 | 7.3997 | | 0.9035 | 63700 | 7.3899 | | 0.9050 | 63800 | 7.2831 | | 0.9064 | 63900 | 7.3826 | | 0.9078 | 64000 | 7.5137 | | 0.9092 | 64100 | 7.4258 | | 0.9106 | 64200 | 7.4195 | | 0.9121 | 64300 | 7.4142 | | 0.9135 | 64400 | 7.3062 | | 0.9149 | 64500 | 7.2996 | | 0.9163 | 64600 | 7.4322 | | 0.9177 | 64700 | 7.3144 | | 0.9191 | 64800 | 7.4039 | | 0.9206 | 64900 | 7.2989 | | 0.9220 | 65000 | 7.3177 | | 0.9234 | 65100 | 7.3395 | | 0.9248 | 65200 | 7.3534 | | 0.9262 | 65300 | 7.457 | | 0.9277 | 65400 | 7.3587 | | 0.9291 | 65500 | 7.3916 | | 0.9305 | 65600 | 7.3288 | | 0.9319 | 65700 | 7.4309 | | 0.9333 | 65800 | 7.4627 | | 0.9348 | 65900 | 7.4091 | | 0.9362 | 66000 | 7.4049 | | 0.9376 | 66100 | 7.341 | | 0.9390 | 66200 | 7.362 | | 0.9404 | 66300 | 7.3172 | | 0.9418 | 66400 | 7.3683 | | 0.9433 | 66500 | 7.3487 | | 0.9447 | 66600 | 7.3346 | | 0.9461 | 66700 | 7.3146 | | 0.9475 | 66800 | 7.4002 | | 0.9489 | 66900 | 7.4141 | | 0.9504 | 67000 | 7.3986 | | 0.9518 | 67100 | 7.3521 | | 0.9532 | 67200 | 7.4079 | | 0.9546 | 67300 | 7.3378 | | 0.9560 | 67400 | 7.3006 | | 0.9574 | 67500 | 7.3506 | | 0.9589 | 67600 | 7.3671 | | 0.9603 | 67700 | 7.4017 | | 0.9617 | 67800 | 7.3573 | | 0.9631 | 67900 | 7.2843 | | 0.9645 | 68000 | 7.3528 | | 0.9660 | 68100 | 7.3296 | | 0.9674 | 68200 | 7.3433 | | 0.9688 | 68300 | 7.3529 | | 0.9702 | 68400 | 7.2929 | | 0.9716 | 68500 | 7.3289 | | 0.9730 | 68600 | 7.4613 | | 0.9745 | 68700 | 7.4588 | | 0.9759 | 68800 | 7.3326 | | 0.9773 | 68900 | 7.2601 | | 0.9787 | 69000 | 7.3314 | | 0.9801 | 69100 | 7.3782 | | 0.9816 | 69200 | 7.4445 | | 0.9830 | 69300 | 7.3459 | | 0.9844 | 69400 | 7.4281 | | 0.9858 | 69500 | 7.3766 | | 0.9872 | 69600 | 7.3094 | | 0.9887 | 69700 | 7.2895 | | 0.9901 | 69800 | 7.3939 | | 0.9915 | 69900 | 7.2774 | | 0.9929 | 70000 | 7.423 | | 0.9943 | 70100 | 7.3437 | | 0.9957 | 70200 | 7.3873 | | 0.9972 | 70300 | 7.4257 | | 0.9986 | 70400 | 7.3397 | | 1.0 | 70500 | 7.3163 | | 1.0014 | 70600 | 7.2886 | | 1.0028 | 70700 | 7.2694 | | 1.0043 | 70800 | 7.4706 | | 1.0057 | 70900 | 7.3052 | | 1.0071 | 71000 | 7.346 | | 1.0085 | 71100 | 7.3441 | | 1.0099 | 71200 | 7.4934 | | 1.0113 | 71300 | 7.3228 | | 1.0128 | 71400 | 7.3612 | | 1.0142 | 71500 | 7.3146 | | 1.0156 | 71600 | 7.3954 | | 1.0170 | 71700 | 7.4023 | | 1.0184 | 71800 | 7.4032 | | 1.0199 | 71900 | 7.3061 | | 1.0213 | 72000 | 7.406 | | 1.0227 | 72100 | 7.243 | | 1.0241 | 72200 | 7.3334 | | 1.0255 | 72300 | 7.389 | | 1.0270 | 72400 | 7.3977 | | 1.0284 | 72500 | 7.2887 | | 1.0298 | 72600 | 7.2825 | | 1.0312 | 72700 | 7.2907 | | 1.0326 | 72800 | 7.3244 | | 1.0340 | 72900 | 7.4266 | | 1.0355 | 73000 | 7.3328 | | 1.0369 | 73100 | 7.3503 | | 1.0383 | 73200 | 7.3473 | | 1.0397 | 73300 | 7.3024 | | 1.0411 | 73400 | 7.3337 | | 1.0426 | 73500 | 7.3857 | | 1.0440 | 73600 | 7.3282 | | 1.0454 | 73700 | 7.2501 | | 1.0468 | 73800 | 7.3272 | | 1.0482 | 73900 | 7.4248 | | 1.0496 | 74000 | 7.4097 | | 1.0511 | 74100 | 7.2995 | | 1.0525 | 74200 | 7.3457 | | 1.0539 | 74300 | 7.3362 | | 1.0553 | 74400 | 7.3313 | | 1.0567 | 74500 | 7.3367 | | 1.0582 | 74600 | 7.2944 | | 1.0596 | 74700 | 7.3885 | | 1.0610 | 74800 | 7.304 | | 1.0624 | 74900 | 7.351 | | 1.0638 | 75000 | 7.3737 | | 1.0652 | 75100 | 7.3723 | | 1.0667 | 75200 | 7.4372 | | 1.0681 | 75300 | 7.2352 | | 1.0695 | 75400 | 7.3445 | | 1.0709 | 75500 | 7.3433 | | 1.0723 | 75600 | 7.3618 | | 1.0738 | 75700 | 7.3856 | | 1.0752 | 75800 | 7.3556 | | 1.0766 | 75900 | 7.3787 | | 1.0780 | 76000 | 7.3154 | | 1.0794 | 76100 | 7.3646 | | 1.0809 | 76200 | 7.3179 | | 1.0823 | 76300 | 7.27 | | 1.0837 | 76400 | 7.2857 | | 1.0851 | 76500 | 7.3789 | | 1.0865 | 76600 | 7.2295 | | 1.0879 | 76700 | 7.3335 | | 1.0894 | 76800 | 7.3219 | | 1.0908 | 76900 | 7.3221 | | 1.0922 | 77000 | 7.4004 | | 1.0936 | 77100 | 7.3327 | | 1.0950 | 77200 | 7.3576 | | 1.0965 | 77300 | 7.3497 | | 1.0979 | 77400 | 7.4311 | | 1.0993 | 77500 | 7.2873 | | 1.1007 | 77600 | 7.3925 | | 1.1021 | 77700 | 7.256 | | 1.1035 | 77800 | 7.3704 | | 1.1050 | 77900 | 7.3758 | | 1.1064 | 78000 | 7.3813 | | 1.1078 | 78100 | 7.2789 | | 1.1092 | 78200 | 7.3123 | | 1.1106 | 78300 | 7.3435 | | 1.1121 | 78400 | 7.3492 | | 1.1135 | 78500 | 7.2986 | | 1.1149 | 78600 | 7.2842 | | 1.1163 | 78700 | 7.2871 | | 1.1177 | 78800 | 7.3348 | | 1.1191 | 78900 | 7.3022 | | 1.1206 | 79000 | 7.3909 | | 1.1220 | 79100 | 7.3 | | 1.1234 | 79200 | 7.415 | | 1.1248 | 79300 | 7.3909 | | 1.1262 | 79400 | 7.267 | | 1.1277 | 79500 | 7.3133 | | 1.1291 | 79600 | 7.3269 | | 1.1305 | 79700 | 7.2867 | | 1.1319 | 79800 | 7.3144 | | 1.1333 | 79900 | 7.3055 | | 1.1348 | 80000 | 7.4065 | | 1.1362 | 80100 | 7.3275 | | 1.1376 | 80200 | 7.3949 | | 1.1390 | 80300 | 7.3967 | | 1.1404 | 80400 | 7.2934 | | 1.1418 | 80500 | 7.3216 | | 1.1433 | 80600 | 7.3931 | | 1.1447 | 80700 | 7.375 | | 1.1461 | 80800 | 7.3385 | | 1.1475 | 80900 | 7.3662 | | 1.1489 | 81000 | 7.3692 | | 1.1504 | 81100 | 7.256 | | 1.1518 | 81200 | 7.286 | | 1.1532 | 81300 | 7.3671 | | 1.1546 | 81400 | 7.2735 | | 1.1560 | 81500 | 7.2919 | | 1.1574 | 81600 | 7.2323 | | 1.1589 | 81700 | 7.3409 | | 1.1603 | 81800 | 7.3005 | | 1.1617 | 81900 | 7.2951 | | 1.1631 | 82000 | 7.3804 | | 1.1645 | 82100 | 7.3677 | | 1.1660 | 82200 | 7.2892 | | 1.1674 | 82300 | 7.2788 | | 1.1688 | 82400 | 7.341 | | 1.1702 | 82500 | 7.3507 | | 1.1716 | 82600 | 7.4341 | | 1.1730 | 82700 | 7.2935 | | 1.1745 | 82800 | 7.3283 | | 1.1759 | 82900 | 7.3055 | | 1.1773 | 83000 | 7.2957 | | 1.1787 | 83100 | 7.287 | | 1.1801 | 83200 | 7.4028 | | 1.1816 | 83300 | 7.3504 | | 1.1830 | 83400 | 7.3796 | | 1.1844 | 83500 | 7.2504 | | 1.1858 | 83600 | 7.4789 | | 1.1872 | 83700 | 7.285 | | 1.1887 | 83800 | 7.3227 | | 1.1901 | 83900 | 7.296 | | 1.1915 | 84000 | 7.35 | | 1.1929 | 84100 | 7.2679 | | 1.1943 | 84200 | 7.333 | | 1.1957 | 84300 | 7.3939 | | 1.1972 | 84400 | 7.2432 | | 1.1986 | 84500 | 7.3441 | | 1.2 | 84600 | 7.2968 | | 1.2014 | 84700 | 7.2888 | | 1.2028 | 84800 | 7.3875 | | 1.2043 | 84900 | 7.3113 | | 1.2057 | 85000 | 7.2672 | | 1.2071 | 85100 | 7.2071 | | 1.2085 | 85200 | 7.3769 | | 1.2099 | 85300 | 7.3457 | | 1.2113 | 85400 | 7.2837 | | 1.2128 | 85500 | 7.296 | | 1.2142 | 85600 | 7.3517 | | 1.2156 | 85700 | 7.288 | | 1.2170 | 85800 | 7.319 | | 1.2184 | 85900 | 7.334 | | 1.2199 | 86000 | 7.256 | | 1.2213 | 86100 | 7.3348 | | 1.2227 | 86200 | 7.3671 | | 1.2241 | 86300 | 7.3484 | | 1.2255 | 86400 | 7.3802 | | 1.2270 | 86500 | 7.4165 | | 1.2284 | 86600 | 7.3639 | | 1.2298 | 86700 | 7.3104 | | 1.2312 | 86800 | 7.3015 | | 1.2326 | 86900 | 7.2736 | | 1.2340 | 87000 | 7.2733 | | 1.2355 | 87100 | 7.4366 | | 1.2369 | 87200 | 7.3102 | | 1.2383 | 87300 | 7.3026 | | 1.2397 | 87400 | 7.305 | | 1.2411 | 87500 | 7.2666 | | 1.2426 | 87600 | 7.3237 | | 1.2440 | 87700 | 7.2697 | | 1.2454 | 87800 | 7.3613 | | 1.2468 | 87900 | 7.2699 | | 1.2482 | 88000 | 7.3067 | | 1.2496 | 88100 | 7.4753 | | 1.2511 | 88200 | 7.3618 | | 1.2525 | 88300 | 7.3118 | | 1.2539 | 88400 | 7.3353 | | 1.2553 | 88500 | 7.3538 | | 1.2567 | 88600 | 7.3104 | | 1.2582 | 88700 | 7.366 | | 1.2596 | 88800 | 7.2524 | | 1.2610 | 88900 | 7.265 | | 1.2624 | 89000 | 7.3004 | | 1.2638 | 89100 | 7.284 | | 1.2652 | 89200 | 7.299 | | 1.2667 | 89300 | 7.2815 | | 1.2681 | 89400 | 7.3065 | | 1.2695 | 89500 | 7.2373 | | 1.2709 | 89600 | 7.2682 | | 1.2723 | 89700 | 7.3936 | | 1.2738 | 89800 | 7.1825 | | 1.2752 | 89900 | 7.3545 | | 1.2766 | 90000 | 7.2797 | | 1.2780 | 90100 | 7.317 | | 1.2794 | 90200 | 7.5024 | | 1.2809 | 90300 | 7.3189 | | 1.2823 | 90400 | 7.2759 | | 1.2837 | 90500 | 7.3078 | | 1.2851 | 90600 | 7.2482 | | 1.2865 | 90700 | 7.3459 | | 1.2879 | 90800 | 7.3925 | | 1.2894 | 90900 | 7.2866 | | 1.2908 | 91000 | 7.4288 | | 1.2922 | 91100 | 7.3249 | | 1.2936 | 91200 | 7.3204 | | 1.2950 | 91300 | 7.2658 | | 1.2965 | 91400 | 7.3711 | | 1.2979 | 91500 | 7.3255 | | 1.2993 | 91600 | 7.2959 | | 1.3007 | 91700 | 7.2292 | | 1.3021 | 91800 | 7.4353 | | 1.3035 | 91900 | 7.2374 | | 1.3050 | 92000 | 7.259 | | 1.3064 | 92100 | 7.2604 | | 1.3078 | 92200 | 7.3677 | | 1.3092 | 92300 | 7.3241 | | 1.3106 | 92400 | 7.2334 | | 1.3121 | 92500 | 7.3539 | | 1.3135 | 92600 | 7.4117 | | 1.3149 | 92700 | 7.4031 | | 1.3163 | 92800 | 7.274 | | 1.3177 | 92900 | 7.3847 | | 1.3191 | 93000 | 7.2802 | | 1.3206 | 93100 | 7.3394 | | 1.3220 | 93200 | 7.3119 | | 1.3234 | 93300 | 7.2213 | | 1.3248 | 93400 | 7.3513 | | 1.3262 | 93500 | 7.3586 | | 1.3277 | 93600 | 7.2746 | | 1.3291 | 93700 | 7.4017 | | 1.3305 | 93800 | 7.356 | | 1.3319 | 93900 | 7.2604 | | 1.3333 | 94000 | 7.3227 | | 1.3348 | 94100 | 7.2026 | | 1.3362 | 94200 | 7.326 | | 1.3376 | 94300 | 7.2314 | | 1.3390 | 94400 | 7.2839 | | 1.3404 | 94500 | 7.2059 | | 1.3418 | 94600 | 7.2935 | | 1.3433 | 94700 | 7.4495 | | 1.3447 | 94800 | 7.2253 | | 1.3461 | 94900 | 7.3141 | | 1.3475 | 95000 | 7.3476 | | 1.3489 | 95100 | 7.3569 | | 1.3504 | 95200 | 7.3161 | | 1.3518 | 95300 | 7.2797 | | 1.3532 | 95400 | 7.3661 | | 1.3546 | 95500 | 7.3076 | | 1.3560 | 95600 | 7.3267 | | 1.3574 | 95700 | 7.3302 | | 1.3589 | 95800 | 7.2281 | | 1.3603 | 95900 | 7.2545 | | 1.3617 | 96000 | 7.3984 | | 1.3631 | 96100 | 7.3806 | | 1.3645 | 96200 | 7.2286 | | 1.3660 | 96300 | 7.2284 | | 1.3674 | 96400 | 7.3688 | | 1.3688 | 96500 | 7.3673 | | 1.3702 | 96600 | 7.2965 | | 1.3716 | 96700 | 7.4199 | | 1.3730 | 96800 | 7.4159 | | 1.3745 | 96900 | 7.348 | | 1.3759 | 97000 | 7.3018 | | 1.3773 | 97100 | 7.3613 | | 1.3787 | 97200 | 7.3398 | | 1.3801 | 97300 | 7.3513 | | 1.3816 | 97400 | 7.288 | | 1.3830 | 97500 | 7.363 | | 1.3844 | 97600 | 7.2835 | | 1.3858 | 97700 | 7.2228 | | 1.3872 | 97800 | 7.333 | | 1.3887 | 97900 | 7.3071 | | 1.3901 | 98000 | 7.3316 | | 1.3915 | 98100 | 7.4089 | | 1.3929 | 98200 | 7.3146 | | 1.3943 | 98300 | 7.2549 | | 1.3957 | 98400 | 7.2979 | | 1.3972 | 98500 | 7.4236 | | 1.3986 | 98600 | 7.3343 | | 1.4 | 98700 | 7.3174 | | 1.4014 | 98800 | 7.3408 | | 1.4028 | 98900 | 7.208 | | 1.4043 | 99000 | 7.3943 | | 1.4057 | 99100 | 7.22 | | 1.4071 | 99200 | 7.3581 | | 1.4085 | 99300 | 7.299 | | 1.4099 | 99400 | 7.4252 | | 1.4113 | 99500 | 7.2181 | | 1.4128 | 99600 | 7.2297 | | 1.4142 | 99700 | 7.2893 | | 1.4156 | 99800 | 7.2747 | | 1.4170 | 99900 | 7.2606 | | 1.4184 | 100000 | 7.2651 | | 1.4199 | 100100 | 7.2562 | | 1.4213 | 100200 | 7.249 | | 1.4227 | 100300 | 7.3054 | | 1.4241 | 100400 | 7.3037 | | 1.4255 | 100500 | 7.3588 | | 1.4270 | 100600 | 7.3149 | | 1.4284 | 100700 | 7.3758 | | 1.4298 | 100800 | 7.3864 | | 1.4312 | 100900 | 7.4638 | | 1.4326 | 101000 | 7.2794 | | 1.4340 | 101100 | 7.2966 | | 1.4355 | 101200 | 7.3062 | | 1.4369 | 101300 | 7.2816 | | 1.4383 | 101400 | 7.2954 | | 1.4397 | 101500 | 7.3452 | | 1.4411 | 101600 | 7.2929 | | 1.4426 | 101700 | 7.2642 | | 1.4440 | 101800 | 7.3821 | | 1.4454 | 101900 | 7.3166 | | 1.4468 | 102000 | 7.2659 | | 1.4482 | 102100 | 7.3312 | | 1.4496 | 102200 | 7.2996 | | 1.4511 | 102300 | 7.3012 | | 1.4525 | 102400 | 7.3341 | | 1.4539 | 102500 | 7.2815 | | 1.4553 | 102600 | 7.2468 | | 1.4567 | 102700 | 7.3448 | | 1.4582 | 102800 | 7.2618 | | 1.4596 | 102900 | 7.2916 | | 1.4610 | 103000 | 7.3198 | | 1.4624 | 103100 | 7.2993 | | 1.4638 | 103200 | 7.238 | | 1.4652 | 103300 | 7.3266 | | 1.4667 | 103400 | 7.3953 | | 1.4681 | 103500 | 7.2839 | | 1.4695 | 103600 | 7.2833 | | 1.4709 | 103700 | 7.2805 | | 1.4723 | 103800 | 7.3553 | | 1.4738 | 103900 | 7.2881 | | 1.4752 | 104000 | 7.2375 | | 1.4766 | 104100 | 7.2558 | | 1.4780 | 104200 | 7.2436 | | 1.4794 | 104300 | 7.3178 | | 1.4809 | 104400 | 7.2821 | | 1.4823 | 104500 | 7.3493 | | 1.4837 | 104600 | 7.3474 | | 1.4851 | 104700 | 7.3064 | | 1.4865 | 104800 | 7.2802 | | 1.4879 | 104900 | 7.2726 | | 1.4894 | 105000 | 7.3221 | | 1.4908 | 105100 | 7.3383 | | 1.4922 | 105200 | 7.3353 | | 1.4936 | 105300 | 7.415 | | 1.4950 | 105400 | 7.3037 | | 1.4965 | 105500 | 7.3238 | | 1.4979 | 105600 | 7.2854 | | 1.4993 | 105700 | 7.4297 | | 1.5007 | 105800 | 7.2565 | | 1.5021 | 105900 | 7.3095 | | 1.5035 | 106000 | 7.2194 | | 1.5050 | 106100 | 7.3561 | | 1.5064 | 106200 | 7.3007 | | 1.5078 | 106300 | 7.298 | | 1.5092 | 106400 | 7.2221 | | 1.5106 | 106500 | 7.2762 | | 1.5121 | 106600 | 7.4222 | | 1.5135 | 106700 | 7.3456 | | 1.5149 | 106800 | 7.2946 | | 1.5163 | 106900 | 7.3141 | | 1.5177 | 107000 | 7.2073 | | 1.5191 | 107100 | 7.3115 | | 1.5206 | 107200 | 7.299 | | 1.5220 | 107300 | 7.2877 | | 1.5234 | 107400 | 7.3435 | | 1.5248 | 107500 | 7.2616 | | 1.5262 | 107600 | 7.239 | | 1.5277 | 107700 | 7.1948 | | 1.5291 | 107800 | 7.3348 | | 1.5305 | 107900 | 7.2626 | | 1.5319 | 108000 | 7.2106 | | 1.5333 | 108100 | 7.231 | | 1.5348 | 108200 | 7.4347 | | 1.5362 | 108300 | 7.2649 | | 1.5376 | 108400 | 7.2664 | | 1.5390 | 108500 | 7.4036 | | 1.5404 | 108600 | 7.3337 | | 1.5418 | 108700 | 7.2822 | | 1.5433 | 108800 | 7.3242 | | 1.5447 | 108900 | 7.1992 | | 1.5461 | 109000 | 7.3179 | | 1.5475 | 109100 | 7.3148 | | 1.5489 | 109200 | 7.2751 | | 1.5504 | 109300 | 7.2676 | | 1.5518 | 109400 | 7.2261 | | 1.5532 | 109500 | 7.2873 | | 1.5546 | 109600 | 7.2813 | | 1.5560 | 109700 | 7.3457 | | 1.5574 | 109800 | 7.2529 | | 1.5589 | 109900 | 7.2515 | | 1.5603 | 110000 | 7.1842 | | 1.5617 | 110100 | 7.2605 | | 1.5631 | 110200 | 7.2466 | | 1.5645 | 110300 | 7.3674 | | 1.5660 | 110400 | 7.3491 | | 1.5674 | 110500 | 7.3087 | | 1.5688 | 110600 | 7.4266 | | 1.5702 | 110700 | 7.3286 | | 1.5716 | 110800 | 7.3473 | | 1.5730 | 110900 | 7.3397 | | 1.5745 | 111000 | 7.3314 | | 1.5759 | 111100 | 7.3542 | | 1.5773 | 111200 | 7.3942 | | 1.5787 | 111300 | 7.1907 | | 1.5801 | 111400 | 7.2817 | | 1.5816 | 111500 | 7.3582 | | 1.5830 | 111600 | 7.2846 | | 1.5844 | 111700 | 7.2151 | | 1.5858 | 111800 | 7.2562 | | 1.5872 | 111900 | 7.3986 | | 1.5887 | 112000 | 7.2814 | | 1.5901 | 112100 | 7.2669 | | 1.5915 | 112200 | 7.3615 | | 1.5929 | 112300 | 7.3814 | | 1.5943 | 112400 | 7.3346 | | 1.5957 | 112500 | 7.3731 | | 1.5972 | 112600 | 7.4307 | | 1.5986 | 112700 | 7.3539 | | 1.6 | 112800 | 7.2197 | | 1.6014 | 112900 | 7.2688 | | 1.6028 | 113000 | 7.1784 | | 1.6043 | 113100 | 7.2101 | | 1.6057 | 113200 | 7.3872 | | 1.6071 | 113300 | 7.2263 | | 1.6085 | 113400 | 7.1674 | | 1.6099 | 113500 | 7.3255 | | 1.6113 | 113600 | 7.3325 | | 1.6128 | 113700 | 7.2839 | | 1.6142 | 113800 | 7.1871 | | 1.6156 | 113900 | 7.1871 | | 1.6170 | 114000 | 7.2528 | | 1.6184 | 114100 | 7.2189 | | 1.6199 | 114200 | 7.3384 | | 1.6213 | 114300 | 7.411 | | 1.6227 | 114400 | 7.1913 | | 1.6241 | 114500 | 7.2633 | | 1.6255 | 114600 | 7.3221 | | 1.6270 | 114700 | 7.4802 | | 1.6284 | 114800 | 7.2717 | | 1.6298 | 114900 | 7.195 | | 1.6312 | 115000 | 7.2621 | | 1.6326 | 115100 | 7.3467 | | 1.6340 | 115200 | 7.3489 | | 1.6355 | 115300 | 7.3048 | | 1.6369 | 115400 | 7.2595 | | 1.6383 | 115500 | 7.26 | | 1.6397 | 115600 | 7.3985 | | 1.6411 | 115700 | 7.2256 | | 1.6426 | 115800 | 7.2053 | | 1.6440 | 115900 | 7.2553 | | 1.6454 | 116000 | 7.3956 | | 1.6468 | 116100 | 7.1892 | | 1.6482 | 116200 | 7.2961 | | 1.6496 | 116300 | 7.2112 | | 1.6511 | 116400 | 7.2105 | | 1.6525 | 116500 | 7.3504 | | 1.6539 | 116600 | 7.2846 | | 1.6553 | 116700 | 7.2816 | | 1.6567 | 116800 | 7.3106 | | 1.6582 | 116900 | 7.3241 | | 1.6596 | 117000 | 7.2676 | | 1.6610 | 117100 | 7.3273 | | 1.6624 | 117200 | 7.2255 | | 1.6638 | 117300 | 7.1656 | | 1.6652 | 117400 | 7.2605 | | 1.6667 | 117500 | 7.3947 | | 1.6681 | 117600 | 7.2524 | | 1.6695 | 117700 | 7.2978 | | 1.6709 | 117800 | 7.2155 | | 1.6723 | 117900 | 7.2345 | | 1.6738 | 118000 | 7.309 | | 1.6752 | 118100 | 7.3104 | | 1.6766 | 118200 | 7.428 | | 1.6780 | 118300 | 7.2632 | | 1.6794 | 118400 | 7.2035 | | 1.6809 | 118500 | 7.2805 | | 1.6823 | 118600 | 7.2375 | | 1.6837 | 118700 | 7.2614 | | 1.6851 | 118800 | 7.213 | | 1.6865 | 118900 | 7.2832 | | 1.6879 | 119000 | 7.2919 | | 1.6894 | 119100 | 7.3301 | | 1.6908 | 119200 | 7.3109 | | 1.6922 | 119300 | 7.254 | | 1.6936 | 119400 | 7.2372 | | 1.6950 | 119500 | 7.2079 | | 1.6965 | 119600 | 7.2195 | | 1.6979 | 119700 | 7.2375 | | 1.6993 | 119800 | 7.295 | | 1.7007 | 119900 | 7.2692 | | 1.7021 | 120000 | 7.337 | | 1.7035 | 120100 | 7.4117 | | 1.7050 | 120200 | 7.2755 | | 1.7064 | 120300 | 7.2673 | | 1.7078 | 120400 | 7.2525 | | 1.7092 | 120500 | 7.2735 | | 1.7106 | 120600 | 7.2824 | | 1.7121 | 120700 | 7.2272 | | 1.7135 | 120800 | 7.2679 | | 1.7149 | 120900 | 7.3994 | | 1.7163 | 121000 | 7.258 | | 1.7177 | 121100 | 7.2336 | | 1.7191 | 121200 | 7.3152 | | 1.7206 | 121300 | 7.3595 | | 1.7220 | 121400 | 7.2357 | | 1.7234 | 121500 | 7.2982 | | 1.7248 | 121600 | 7.2672 | | 1.7262 | 121700 | 7.3124 | | 1.7277 | 121800 | 7.2843 | | 1.7291 | 121900 | 7.3037 | | 1.7305 | 122000 | 7.2205 | | 1.7319 | 122100 | 7.3037 | | 1.7333 | 122200 | 7.4012 | | 1.7348 | 122300 | 7.1974 | | 1.7362 | 122400 | 7.3394 | | 1.7376 | 122500 | 7.3588 | | 1.7390 | 122600 | 7.2486 | | 1.7404 | 122700 | 7.2903 | | 1.7418 | 122800 | 7.2629 | | 1.7433 | 122900 | 7.2352 | | 1.7447 | 123000 | 7.2867 | | 1.7461 | 123100 | 7.2724 | | 1.7475 | 123200 | 7.2743 | | 1.7489 | 123300 | 7.1701 | | 1.7504 | 123400 | 7.2767 | | 1.7518 | 123500 | 7.2658 | | 1.7532 | 123600 | 7.209 | | 1.7546 | 123700 | 7.4533 | | 1.7560 | 123800 | 7.2698 | | 1.7574 | 123900 | 7.3682 | | 1.7589 | 124000 | 7.2511 | | 1.7603 | 124100 | 7.3568 | | 1.7617 | 124200 | 7.1904 | | 1.7631 | 124300 | 7.3823 | | 1.7645 | 124400 | 7.3067 | | 1.7660 | 124500 | 7.2547 | | 1.7674 | 124600 | 7.231 | | 1.7688 | 124700 | 7.323 | | 1.7702 | 124800 | 7.1907 | | 1.7716 | 124900 | 7.3493 | | 1.7730 | 125000 | 7.3784 | | 1.7745 | 125100 | 7.3131 | | 1.7759 | 125200 | 7.2577 | | 1.7773 | 125300 | 7.2976 | | 1.7787 | 125400 | 7.2856 | | 1.7801 | 125500 | 7.1852 | | 1.7816 | 125600 | 7.2779 | | 1.7830 | 125700 | 7.3044 | | 1.7844 | 125800 | 7.2735 | | 1.7858 | 125900 | 7.2157 | | 1.7872 | 126000 | 7.256 | | 1.7887 | 126100 | 7.2939 | | 1.7901 | 126200 | 7.2297 | | 1.7915 | 126300 | 7.2221 | | 1.7929 | 126400 | 7.277 | | 1.7943 | 126500 | 7.203 | | 1.7957 | 126600 | 7.2193 | | 1.7972 | 126700 | 7.3848 | | 1.7986 | 126800 | 7.2891 | | 1.8 | 126900 | 7.1958 | | 1.8014 | 127000 | 7.316 | | 1.8028 | 127100 | 7.2108 | | 1.8043 | 127200 | 7.2194 | | 1.8057 | 127300 | 7.1937 | | 1.8071 | 127400 | 7.4097 | | 1.8085 | 127500 | 7.2644 | | 1.8099 | 127600 | 7.3223 | | 1.8113 | 127700 | 7.2851 | | 1.8128 | 127800 | 7.2893 | | 1.8142 | 127900 | 7.2451 | | 1.8156 | 128000 | 7.2803 | | 1.8170 | 128100 | 7.3891 | | 1.8184 | 128200 | 7.3642 | | 1.8199 | 128300 | 7.2644 | | 1.8213 | 128400 | 7.1783 | | 1.8227 | 128500 | 7.2531 | | 1.8241 | 128600 | 7.1973 | | 1.8255 | 128700 | 7.2198 | | 1.8270 | 128800 | 7.2278 | | 1.8284 | 128900 | 7.2631 | | 1.8298 | 129000 | 7.3625 | | 1.8312 | 129100 | 7.2299 | | 1.8326 | 129200 | 7.3305 | | 1.8340 | 129300 | 7.2672 | | 1.8355 | 129400 | 7.3255 | | 1.8369 | 129500 | 7.1958 | | 1.8383 | 129600 | 7.3867 | | 1.8397 | 129700 | 7.2442 | | 1.8411 | 129800 | 7.2788 | | 1.8426 | 129900 | 7.3084 | | 1.8440 | 130000 | 7.1875 | | 1.8454 | 130100 | 7.2022 | | 1.8468 | 130200 | 7.215 | | 1.8482 | 130300 | 7.2596 | | 1.8496 | 130400 | 7.296 | | 1.8511 | 130500 | 7.2243 | | 1.8525 | 130600 | 7.2402 | | 1.8539 | 130700 | 7.2287 | | 1.8553 | 130800 | 7.3283 | | 1.8567 | 130900 | 7.2389 | | 1.8582 | 131000 | 7.2126 | | 1.8596 | 131100 | 7.3993 | | 1.8610 | 131200 | 7.3284 | | 1.8624 | 131300 | 7.2295 | | 1.8638 | 131400 | 7.1896 | | 1.8652 | 131500 | 7.2439 | | 1.8667 | 131600 | 7.2155 | | 1.8681 | 131700 | 7.2517 | | 1.8695 | 131800 | 7.173 | | 1.8709 | 131900 | 7.223 | | 1.8723 | 132000 | 7.295 | | 1.8738 | 132100 | 7.2234 | | 1.8752 | 132200 | 7.2243 | | 1.8766 | 132300 | 7.4691 | | 1.8780 | 132400 | 7.2485 | | 1.8794 | 132500 | 7.2275 | | 1.8809 | 132600 | 7.2277 | | 1.8823 | 132700 | 7.3274 | | 1.8837 | 132800 | 7.4069 | | 1.8851 | 132900 | 7.4662 | | 1.8865 | 133000 | 7.5294 | | 1.8879 | 133100 | 7.297 | | 1.8894 | 133200 | 7.2931 | | 1.8908 | 133300 | 7.3336 | | 1.8922 | 133400 | 7.3819 | | 1.8936 | 133500 | 7.2764 | | 1.8950 | 133600 | 7.1839 | | 1.8965 | 133700 | 7.1937 | | 1.8979 | 133800 | 7.2698 | | 1.8993 | 133900 | 7.2531 | | 1.9007 | 134000 | 7.2547 | | 1.9021 | 134100 | 7.2672 | | 1.9035 | 134200 | 7.2277 | | 1.9050 | 134300 | 7.33 | | 1.9064 | 134400 | 7.2678 | | 1.9078 | 134500 | 7.3316 | | 1.9092 | 134600 | 7.332 | | 1.9106 | 134700 | 7.2112 | | 1.9121 | 134800 | 7.2481 | | 1.9135 | 134900 | 7.2636 | | 1.9149 | 135000 | 7.3524 | | 1.9163 | 135100 | 7.3855 | | 1.9177 | 135200 | 7.1926 | | 1.9191 | 135300 | 7.2504 | | 1.9206 | 135400 | 7.3069 | | 1.9220 | 135500 | 7.2681 | | 1.9234 | 135600 | 7.2553 | | 1.9248 | 135700 | 7.261 | | 1.9262 | 135800 | 7.3087 | | 1.9277 | 135900 | 7.2479 | | 1.9291 | 136000 | 7.2079 | | 1.9305 | 136100 | 7.2997 | | 1.9319 | 136200 | 7.2686 | | 1.9333 | 136300 | 7.2194 | | 1.9348 | 136400 | 7.3456 | | 1.9362 | 136500 | 7.1871 | | 1.9376 | 136600 | 7.2906 | | 1.9390 | 136700 | 7.1882 | | 1.9404 | 136800 | 7.2256 | | 1.9418 | 136900 | 7.2947 | | 1.9433 | 137000 | 7.258 | | 1.9447 | 137100 | 7.2708 | | 1.9461 | 137200 | 7.2111 | | 1.9475 | 137300 | 7.2576 | | 1.9489 | 137400 | 7.2733 | | 1.9504 | 137500 | 7.2649 | | 1.9518 | 137600 | 7.2232 | | 1.9532 | 137700 | 7.3346 | | 1.9546 | 137800 | 7.2479 | | 1.9560 | 137900 | 7.2057 | | 1.9574 | 138000 | 7.2544 | | 1.9589 | 138100 | 7.2448 | | 1.9603 | 138200 | 7.3557 | | 1.9617 | 138300 | 7.2125 | | 1.9631 | 138400 | 7.2608 | | 1.9645 | 138500 | 7.2987 | | 1.9660 | 138600 | 7.1828 | | 1.9674 | 138700 | 7.3248 | | 1.9688 | 138800 | 7.3219 | | 1.9702 | 138900 | 7.3457 | | 1.9716 | 139000 | 7.2512 | | 1.9730 | 139100 | 7.3012 | | 1.9745 | 139200 | 7.2978 | | 1.9759 | 139300 | 7.2322 | | 1.9773 | 139400 | 7.2618 | | 1.9787 | 139500 | 7.2518 | | 1.9801 | 139600 | 7.2333 | | 1.9816 | 139700 | 7.2854 | | 1.9830 | 139800 | 7.2021 | | 1.9844 | 139900 | 7.4261 | | 1.9858 | 140000 | 7.2381 | | 1.9872 | 140100 | 7.3018 | | 1.9887 | 140200 | 7.2407 | | 1.9901 | 140300 | 7.1686 | | 1.9915 | 140400 | 7.4311 | | 1.9929 | 140500 | 7.3061 | | 1.9943 | 140600 | 7.2009 | | 1.9957 | 140700 | 7.2942 | | 1.9972 | 140800 | 7.2231 | | 1.9986 | 140900 | 7.3834 | | 2.0 | 141000 | 7.2203 |
### Framework Versions - Python: 3.8.10 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.4.1+cu118 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```