wei
commited on
Model save
Browse files- README.md +39 -181
- all_results.json +9 -0
- generation_config.json +16 -0
- tokenizer_config.json +0 -1
- train_results.json +9 -0
- trainer_state.json +84 -0
README.md
CHANGED
@@ -1,199 +1,57 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
model_name: Qwen2-VL-7B-Instruct-SFT
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
licence: license
|
9 |
---
|
10 |
|
11 |
+
# Model Card for Qwen2-VL-7B-Instruct-SFT
|
12 |
|
13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
15 |
|
16 |
+
## Quick start
|
17 |
|
18 |
+
```python
|
19 |
+
from transformers import pipeline
|
20 |
|
21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
22 |
+
generator = pipeline("text-generation", model="yichenmeilixinshijie/Qwen2-VL-7B-Instruct-SFT", device="cuda")
|
23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
24 |
+
print(output["generated_text"])
|
25 |
+
```
|
26 |
|
27 |
+
## Training procedure
|
28 |
|
29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/skywork/cot_sft_0226/runs/rnkx2vc4)
|
30 |
|
|
|
31 |
|
32 |
+
This model was trained with SFT.
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Framework versions
|
35 |
|
36 |
+
- TRL: 0.14.0
|
37 |
+
- Transformers: 4.49.0.dev0
|
38 |
+
- Pytorch: 2.5.1
|
39 |
+
- Datasets: 3.3.0
|
40 |
+
- Tokenizers: 0.21.0
|
41 |
|
42 |
+
## Citations
|
|
|
|
|
43 |
|
|
|
44 |
|
|
|
45 |
|
46 |
+
Cite TRL as:
|
47 |
+
|
48 |
+
```bibtex
|
49 |
+
@misc{vonwerra2022trl,
|
50 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
51 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
52 |
+
year = 2020,
|
53 |
+
journal = {GitHub repository},
|
54 |
+
publisher = {GitHub},
|
55 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
56 |
+
}
|
57 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.9777777777777777,
|
3 |
+
"total_flos": 8.982325273768755e+16,
|
4 |
+
"train_loss": 1.056926799542976,
|
5 |
+
"train_runtime": 683.8851,
|
6 |
+
"train_samples": 2145,
|
7 |
+
"train_samples_per_second": 3.136,
|
8 |
+
"train_steps_per_second": 0.048
|
9 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_implementation": null,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"pad_token_id": 151643,
|
10 |
+
"repetition_penalty": 1.05,
|
11 |
+
"temperature": 0.1,
|
12 |
+
"top_k": 1,
|
13 |
+
"top_p": 0.001,
|
14 |
+
"transformers_version": "4.49.0.dev0",
|
15 |
+
"use_cache": false
|
16 |
+
}
|
tokenizer_config.json
CHANGED
@@ -138,7 +138,6 @@
|
|
138 |
"model_max_length": 32768,
|
139 |
"pad_token": "<|endoftext|>",
|
140 |
"padding_side": "left",
|
141 |
-
"processor_class": "Qwen2VLProcessor",
|
142 |
"split_special_tokens": false,
|
143 |
"tokenizer_class": "Qwen2Tokenizer",
|
144 |
"unk_token": null
|
|
|
138 |
"model_max_length": 32768,
|
139 |
"pad_token": "<|endoftext|>",
|
140 |
"padding_side": "left",
|
|
|
141 |
"split_special_tokens": false,
|
142 |
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
"unk_token": null
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.9777777777777777,
|
3 |
+
"total_flos": 8.982325273768755e+16,
|
4 |
+
"train_loss": 1.056926799542976,
|
5 |
+
"train_runtime": 683.8851,
|
6 |
+
"train_samples": 2145,
|
7 |
+
"train_samples_per_second": 3.136,
|
8 |
+
"train_steps_per_second": 0.048
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9777777777777777,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 33,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.14814814814814814,
|
13 |
+
"grad_norm": 8.899718284606934,
|
14 |
+
"learning_rate": 1.9941379571543597e-05,
|
15 |
+
"loss": 1.6146,
|
16 |
+
"step": 5
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.2962962962962963,
|
20 |
+
"grad_norm": 16.135953903198242,
|
21 |
+
"learning_rate": 1.796093065705644e-05,
|
22 |
+
"loss": 1.0589,
|
23 |
+
"step": 10
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.4444444444444444,
|
27 |
+
"grad_norm": 2.037100315093994,
|
28 |
+
"learning_rate": 1.3701381553399147e-05,
|
29 |
+
"loss": 0.9919,
|
30 |
+
"step": 15
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.5925925925925926,
|
34 |
+
"grad_norm": 2.2769477367401123,
|
35 |
+
"learning_rate": 8.382180034472353e-06,
|
36 |
+
"loss": 0.9477,
|
37 |
+
"step": 20
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.7407407407407407,
|
41 |
+
"grad_norm": 1.6512153148651123,
|
42 |
+
"learning_rate": 3.5261371521817247e-06,
|
43 |
+
"loss": 0.9219,
|
44 |
+
"step": 25
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.8888888888888888,
|
48 |
+
"grad_norm": 1.4710832834243774,
|
49 |
+
"learning_rate": 5.234682881719766e-07,
|
50 |
+
"loss": 0.9062,
|
51 |
+
"step": 30
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.9777777777777777,
|
55 |
+
"step": 33,
|
56 |
+
"total_flos": 8.982325273768755e+16,
|
57 |
+
"train_loss": 1.056926799542976,
|
58 |
+
"train_runtime": 683.8851,
|
59 |
+
"train_samples_per_second": 3.136,
|
60 |
+
"train_steps_per_second": 0.048
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"logging_steps": 5,
|
64 |
+
"max_steps": 33,
|
65 |
+
"num_input_tokens_seen": 0,
|
66 |
+
"num_train_epochs": 1,
|
67 |
+
"save_steps": 100,
|
68 |
+
"stateful_callbacks": {
|
69 |
+
"TrainerControl": {
|
70 |
+
"args": {
|
71 |
+
"should_epoch_stop": false,
|
72 |
+
"should_evaluate": false,
|
73 |
+
"should_log": false,
|
74 |
+
"should_save": true,
|
75 |
+
"should_training_stop": true
|
76 |
+
},
|
77 |
+
"attributes": {}
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"total_flos": 8.982325273768755e+16,
|
81 |
+
"train_batch_size": 2,
|
82 |
+
"trial_name": null,
|
83 |
+
"trial_params": null
|
84 |
+
}
|