Upload load_quantized_model.py
Browse files- load_quantized_model.py +66 -0
 
    	
        load_quantized_model.py
    ADDED
    
    | 
         @@ -0,0 +1,66 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # load_quantized_model.py
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from safetensors.torch import load_file
         
     | 
| 5 | 
         
            +
            from optimum.quanto import requantize, quantize, qint4
         
     | 
| 6 | 
         
            +
            from hunyuan_image_3.hunyuan import HunyuanImage3ForCausalMM
         
     | 
| 7 | 
         
            +
            from transformers import AutoConfig, QuantoConfig
         
     | 
| 8 | 
         
            +
            from transformers.generation.utils import GenerationConfig
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def load_quantized_hi3_m1(model_path):
         
     | 
| 12 | 
         
            +
                print(f"Loading model architecture from {model_path} to CPU...")
         
     | 
| 13 | 
         
            +
                Qmodel = HunyuanImage3ForCausalMM.from_pretrained(
         
     | 
| 14 | 
         
            +
                    model_path,
         
     | 
| 15 | 
         
            +
                    dtype=torch.bfloat16,
         
     | 
| 16 | 
         
            +
                    device_map=None,
         
     | 
| 17 | 
         
            +
                    attn_implementation="sdpa",
         
     | 
| 18 | 
         
            +
                    moe_impl="eager",
         
     | 
| 19 | 
         
            +
                    moe_drop_tokens=True,
         
     | 
| 20 | 
         
            +
                    trust_remote_code=True,
         
     | 
| 21 | 
         
            +
                    low_cpu_mem_usage=False,
         
     | 
| 22 | 
         
            +
                )
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                print("Applying int4 quantization structure...")
         
     | 
| 25 | 
         
            +
                quantize(Qmodel, weights=qint4)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                print("Loading quantized weights...")
         
     | 
| 28 | 
         
            +
                state_dict = load_file(f"{model_path}/model.safetensors")
         
     | 
| 29 | 
         
            +
                Qmodel.load_state_dict(state_dict, strict=False, assign=True)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                print("Moving quantized model to GPU...")
         
     | 
| 32 | 
         
            +
                Qmodel = Qmodel.to("cuda")
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                return Qmodel
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def load_quantized_hi3_m2(model_path):
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                state_dict = load_file(f"{model_path}/model.safetensors")
         
     | 
| 42 | 
         
            +
                with open(f"{model_path}/quantization_map.json", "r") as f: quantization_map = json.load(f)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                print("Create Meta model and Loading quantized weights to CPU...")
         
     | 
| 45 | 
         
            +
                with torch.device('meta'): Qmodel = HunyuanImage3ForCausalMM(config)
         
     | 
| 46 | 
         
            +
                Qmodel = Qmodel.to(torch.bfloat16)
         
     | 
| 47 | 
         
            +
                requantize(Qmodel, state_dict, quantization_map, device=torch.device('cpu'))
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                generation_config = GenerationConfig.from_pretrained(model_path)
         
     | 
| 50 | 
         
            +
                Qmodel.generation_config = generation_config
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                print("Moving quantized model to GPU...")
         
     | 
| 53 | 
         
            +
                Qmodel = Qmodel.to(torch.device('cuda'))
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                return Qmodel
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # modify your "app/pipeline.py" script as below:
         
     | 
| 59 | 
         
            +
            # from load_quantized_model import load_quantized_hi3_m1, load_quantized_hi3_m2
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            # replace:
         
     | 
| 62 | 
         
            +
            #        self.model = HunyuanImage3ForCausalMM.from_pretrained(args.model_id, **kwargs)
         
     | 
| 63 | 
         
            +
            # with:
         
     | 
| 64 | 
         
            +
            #        self.model = load_quantized_hi3_m1(args.model_id)
         
     | 
| 65 | 
         
            +
            # or with:
         
     | 
| 66 | 
         
            +
            #        self.model = load_quantized_hi3_m2(args.model_id)
         
     |