Upload folder using huggingface_hub
Browse files- .gitattributes +4 -0
- .gitignore +1 -0
- Anna.wav +3 -0
- README.md +242 -3
- config.json +40 -0
- generation_config.json +12 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +262 -0
- special_tokens_map.json +17 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3 -0
- 太乙真人.wav +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Anna.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
太乙真人.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
Anna.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e443c7de48d80ce064259eacd33b4a4ffc25e5ab051592df3a1fb37ca61f42f9
|
3 |
+
size 508500
|
README.md
CHANGED
@@ -1,3 +1,242 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
8 |
+
tags:
|
9 |
+
- Text-to-Speech
|
10 |
+
pipeline_tag: text-to-speech
|
11 |
+
---
|
12 |
+
|
13 |
+
[](https://arxiv.org/abs/2502.04128)
|
14 |
+
|
15 |
+
**Update (2025-05-10):** Sometimes I find that top_p=0.95 and temperature=0.9 produce more stable results.
|
16 |
+
|
17 |
+
|
18 |
+
**Update (2025-02-13):** Add [Llasa finetune instruction](https://github.com/zhenye234/LLaSA_training/tree/main/finetune).
|
19 |
+
|
20 |
+
|
21 |
+
**Update (2025-02-07):** Our paper has been released!
|
22 |
+
|
23 |
+
|
24 |
+
LLaSA: Scaling Train-Time and Inference-Time Compute for LLaMA-based Speech Synthesis
|
25 |
+
|
26 |
+
|
27 |
+
- **Train from Scratch**: If you want to train the model from scratch, use the [LLaSA Training Repository](https://github.com/zhenye234/LLaSA_training).
|
28 |
+
|
29 |
+
- **Scale for Test-Time Computation**: If you want to experiment with scaling for test-time computation, use the [LLaSA Testing Repository](https://github.com/zhenye234/LLaSA_inference).
|
30 |
+
|
31 |
+
## Model Information
|
32 |
+
Our model, Llasa, is a text-to-speech (TTS) system that extends the text-based LLaMA (1B,3B, and 8B) language model by incorporating speech tokens from the XCodec2 codebook,
|
33 |
+
which contains 65,536 tokens. We trained Llasa on a dataset comprising 250,000 hours of Chinese-English speech data.
|
34 |
+
The model is capable of generating speech **either solely from input text or by utilizing a given speech prompt.**
|
35 |
+
|
36 |
+
The method is seamlessly compatible with the Llama framework, making training TTS similar as training LLM (convert audios into single-codebook tokens and simply view it as a special language). It opens the possiblity of existing method for compression, acceleration and finetuning for LLM to be applied.
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
## How to use
|
41 |
+
Install [XCodec2](https://huggingface.co/HKUSTAudio/xcodec2).
|
42 |
+
|
43 |
+
**1. Speech synthesis solely from input text**
|
44 |
+
```python
|
45 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
46 |
+
import torch
|
47 |
+
import soundfile as sf
|
48 |
+
|
49 |
+
llasa_3b ='HKUSTAudio/Llasa-3B'
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
53 |
+
model.eval()
|
54 |
+
model.to('cuda')
|
55 |
+
|
56 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
57 |
+
|
58 |
+
model_path = "HKUSTAudio/xcodec2"
|
59 |
+
|
60 |
+
Codec_model = XCodec2Model.from_pretrained(model_path)
|
61 |
+
Codec_model.eval().cuda()
|
62 |
+
|
63 |
+
input_text = 'Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me.'
|
64 |
+
# input_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
|
65 |
+
def ids_to_speech_tokens(speech_ids):
|
66 |
+
|
67 |
+
speech_tokens_str = []
|
68 |
+
for speech_id in speech_ids:
|
69 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
70 |
+
return speech_tokens_str
|
71 |
+
|
72 |
+
def extract_speech_ids(speech_tokens_str):
|
73 |
+
|
74 |
+
speech_ids = []
|
75 |
+
for token_str in speech_tokens_str:
|
76 |
+
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
77 |
+
num_str = token_str[4:-2]
|
78 |
+
|
79 |
+
num = int(num_str)
|
80 |
+
speech_ids.append(num)
|
81 |
+
else:
|
82 |
+
print(f"Unexpected token: {token_str}")
|
83 |
+
return speech_ids
|
84 |
+
|
85 |
+
#TTS start!
|
86 |
+
with torch.no_grad():
|
87 |
+
|
88 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
89 |
+
|
90 |
+
# Tokenize the text
|
91 |
+
chat = [
|
92 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
93 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
|
94 |
+
]
|
95 |
+
|
96 |
+
input_ids = tokenizer.apply_chat_template(
|
97 |
+
chat,
|
98 |
+
tokenize=True,
|
99 |
+
return_tensors='pt',
|
100 |
+
continue_final_message=True
|
101 |
+
)
|
102 |
+
input_ids = input_ids.to('cuda')
|
103 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
104 |
+
|
105 |
+
# Generate the speech autoregressively
|
106 |
+
outputs = model.generate(
|
107 |
+
input_ids,
|
108 |
+
max_length=2048, # We trained our model with a max length of 2048
|
109 |
+
eos_token_id= speech_end_id ,
|
110 |
+
do_sample=True,
|
111 |
+
top_p=1, # Adjusts the diversity of generated content
|
112 |
+
temperature=0.8, # Controls randomness in output
|
113 |
+
)
|
114 |
+
# Extract the speech tokens
|
115 |
+
generated_ids = outputs[0][input_ids.shape[1]:-1]
|
116 |
+
|
117 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
118 |
+
|
119 |
+
# Convert token <|s_23456|> to int 23456
|
120 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
121 |
+
|
122 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
123 |
+
|
124 |
+
# Decode the speech tokens to speech waveform
|
125 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
126 |
+
|
127 |
+
|
128 |
+
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
|
129 |
+
```
|
130 |
+
|
131 |
+
**2. Speech synthesis utilizing a given speech prompt**
|
132 |
+
|
133 |
+
```python
|
134 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
135 |
+
import torch
|
136 |
+
import soundfile as sf
|
137 |
+
|
138 |
+
llasa_3b ='HKUSTAudio/Llasa-3B'
|
139 |
+
|
140 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
141 |
+
model = AutoModelForCausalLM.from_pretrained(llasa_3b)
|
142 |
+
model.eval()
|
143 |
+
model.to('cuda')
|
144 |
+
|
145 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
146 |
+
|
147 |
+
model_path = "HKUSTAudio/xcodec2"
|
148 |
+
|
149 |
+
Codec_model = XCodec2Model.from_pretrained(model_path)
|
150 |
+
Codec_model.eval().cuda()
|
151 |
+
# only 16khz speech support!
|
152 |
+
prompt_wav, sr = sf.read("太乙真人.wav") # you can find wav in Files
|
153 |
+
#prompt_wav, sr = sf.read("Anna.wav") # English prompt
|
154 |
+
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
|
155 |
+
|
156 |
+
prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
|
157 |
+
#promt_text = "A chance to leave him alone, but... No. She just wanted to see him again. Anna, you don't know how it feels to lose a sister. Anna, I'm sorry, but your father asked me not to tell you anything."
|
158 |
+
target_text = '突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"'
|
159 |
+
#target_text = "Dealing with family secrets is never easy. Yet, sometimes, omission is a form of protection, intending to safeguard some from the harsh truths. One day, I hope you understand the reasons behind my actions. Until then, Anna, please, bear with me."
|
160 |
+
input_text = prompt_text + target_text
|
161 |
+
|
162 |
+
def ids_to_speech_tokens(speech_ids):
|
163 |
+
|
164 |
+
speech_tokens_str = []
|
165 |
+
for speech_id in speech_ids:
|
166 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
167 |
+
return speech_tokens_str
|
168 |
+
|
169 |
+
def extract_speech_ids(speech_tokens_str):
|
170 |
+
|
171 |
+
speech_ids = []
|
172 |
+
for token_str in speech_tokens_str:
|
173 |
+
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
174 |
+
num_str = token_str[4:-2]
|
175 |
+
|
176 |
+
num = int(num_str)
|
177 |
+
speech_ids.append(num)
|
178 |
+
else:
|
179 |
+
print(f"Unexpected token: {token_str}")
|
180 |
+
return speech_ids
|
181 |
+
|
182 |
+
#TTS start!
|
183 |
+
with torch.no_grad():
|
184 |
+
# Encode the prompt wav
|
185 |
+
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
186 |
+
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
|
187 |
+
|
188 |
+
vq_code_prompt = vq_code_prompt[0,0,:]
|
189 |
+
# Convert int 12345 to token <|s_12345|>
|
190 |
+
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
191 |
+
|
192 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
193 |
+
|
194 |
+
# Tokenize the text and the speech prefix
|
195 |
+
chat = [
|
196 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
197 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
198 |
+
]
|
199 |
+
|
200 |
+
input_ids = tokenizer.apply_chat_template(
|
201 |
+
chat,
|
202 |
+
tokenize=True,
|
203 |
+
return_tensors='pt',
|
204 |
+
continue_final_message=True
|
205 |
+
)
|
206 |
+
input_ids = input_ids.to('cuda')
|
207 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
208 |
+
|
209 |
+
# Generate the speech autoregressively
|
210 |
+
outputs = model.generate(
|
211 |
+
input_ids,
|
212 |
+
max_length=2048, # We trained our model with a max length of 2048
|
213 |
+
eos_token_id= speech_end_id ,
|
214 |
+
do_sample=True,
|
215 |
+
top_p=1,
|
216 |
+
temperature=0.8,
|
217 |
+
)
|
218 |
+
# Extract the speech tokens
|
219 |
+
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
|
220 |
+
|
221 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
222 |
+
|
223 |
+
# Convert token <|s_23456|> to int 23456
|
224 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
225 |
+
|
226 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
227 |
+
|
228 |
+
# Decode the speech tokens to speech waveform
|
229 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
230 |
+
|
231 |
+
# if only need the generated part
|
232 |
+
# gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
|
233 |
+
|
234 |
+
sf.write("gen.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
|
235 |
+
```
|
236 |
+
|
237 |
+
|
238 |
+
## Disclaimer
|
239 |
+
|
240 |
+
This model is licensed under the CC BY-NC 4.0 License, which prohibits free commercial use because of ethics and privacy concerns; detected violations will result in legal consequences.
|
241 |
+
|
242 |
+
This codebase is strictly prohibited from being used for any illegal purposes in any country or region. Please refer to your local laws about DMCA and other related laws.
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": [
|
10 |
+
128001,
|
11 |
+
128008,
|
12 |
+
128009
|
13 |
+
],
|
14 |
+
"head_dim": 128,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 3072,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 8192,
|
19 |
+
"max_position_embeddings": 131072,
|
20 |
+
"mlp_bias": false,
|
21 |
+
"model_type": "llama",
|
22 |
+
"num_attention_heads": 24,
|
23 |
+
"num_hidden_layers": 28,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pretraining_tp": 1,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": {
|
28 |
+
"factor": 32.0,
|
29 |
+
"high_freq_factor": 4.0,
|
30 |
+
"low_freq_factor": 1.0,
|
31 |
+
"original_max_position_embeddings": 8192,
|
32 |
+
"rope_type": "llama3"
|
33 |
+
},
|
34 |
+
"rope_theta": 500000.0,
|
35 |
+
"tie_word_embeddings": true,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.46.1",
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 193800
|
40 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.46.1"
|
12 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f8a625a2d6b0761a4cd70230741d1f98b5efb77d39f445ba6ca593d3a44d52
|
3 |
+
size 4965821600
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7afe408f2b2fbf71f8306c91149b032cf59255dc0e00ddd5a09d90748b3d10a6
|
3 |
+
size 3053117200
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8018909184
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
261 |
+
}
|
262 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|eot_id|>"
|
17 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71d92f3dbf3c23d734e6356241cef149b42fe79848176a54145b6f9a886fd73b
|
3 |
+
size 29521206
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4003bfd44e3c1e936f97823308c868d275d93f0c31e108a4f26ad3d2e3703fbf
|
3 |
+
size 11710428
|
太乙真人.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:014954ddd00ec481f993ca65c904b8f3ff426df1be05ca260e2b03b3e892fc1b
|
3 |
+
size 412402
|