KevinNg99 commited on
Commit
3c75a5a
·
1 Parent(s): ad6b3a6

update README

Browse files
Files changed (2) hide show
  1. README.md +6 -7
  2. README_CN.md +5 -7
README.md CHANGED
@@ -12,7 +12,6 @@ pipeline_tag: text-to-image
12
  extra_gated_eu_disallowed: true
13
  ---
14
 
15
-
16
  [中文阅读](./README_CN.md)
17
 
18
  <p align="center">
@@ -47,8 +46,10 @@ This repo contains PyTorch model definitions, pretrained weights and inference/s
47
 
48
  ## 🔥🔥🔥 Latest Updates
49
 
 
50
  - September 8, 2025: 🚀 Released inference code and model weights for HunyuanImage-2.1.
51
 
 
52
  ## 🎥 Demo
53
 
54
  <div align="center">
@@ -203,11 +204,9 @@ From the results, HunyuanImage 2.1 achieved a relative win rate of -1.36% agains
203
  **Hardware and OS Requirements:**
204
  - NVIDIA GPU with CUDA support.
205
 
206
- **Minimum requrement for now:** 36 GB GPU memory for 2048x2048 image generation.
207
-
208
- > ✨ FP8-quantized models are coming soon, enabling even lower GPU memory requirements for inference, stay tuned 👀!
209
 
210
- > **Note:** The memory requirements above are measured with model CPU offloading enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
211
  - Supported operating system: Linux.
212
 
213
 
@@ -240,7 +239,7 @@ from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeli
240
 
241
  # Supported model_name: hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
242
  model_name = "hunyuanimage-v2.1"
243
- pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, torch_dtype='bf16')
244
  pipe = pipe.to("cuda")
245
 
246
  prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
@@ -255,7 +254,7 @@ image = pipe(
255
  # Please use one of the above width/height pairs for best results.
256
  width=2048,
257
  height=2048,
258
- use_reprompt=True, # Enable prompt enhancement
259
  use_refiner=True, # Enable refiner model
260
  # For the distilled model, use 8 steps for faster inference.
261
  # For the non-distilled model, use 50 steps for better quality.
 
12
  extra_gated_eu_disallowed: true
13
  ---
14
 
 
15
  [中文阅读](./README_CN.md)
16
 
17
  <p align="center">
 
46
 
47
  ## 🔥🔥🔥 Latest Updates
48
 
49
+ - September 12, 2025: 🚀 Released FP8 quantized models! Making it possible to generate 2K images with only 24GB GPU memory!
50
  - September 8, 2025: 🚀 Released inference code and model weights for HunyuanImage-2.1.
51
 
52
+
53
  ## 🎥 Demo
54
 
55
  <div align="center">
 
204
  **Hardware and OS Requirements:**
205
  - NVIDIA GPU with CUDA support.
206
 
207
+ **Minimum requrement for now:** 24 GB GPU memory for 2048x2048 image generation.
 
 
208
 
209
+ > **Note:** The memory requirements above are measured with model CPU offloading and FP8 quantization enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
210
  - Supported operating system: Linux.
211
 
212
 
 
239
 
240
  # Supported model_name: hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
241
  model_name = "hunyuanimage-v2.1"
242
+ pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, use_fp8=True)
243
  pipe = pipe.to("cuda")
244
 
245
  prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
 
254
  # Please use one of the above width/height pairs for best results.
255
  width=2048,
256
  height=2048,
257
+ use_reprompt=False, # Enable prompt enhancement (which may result in higher GPU memory usage)
258
  use_refiner=True, # Enable refiner model
259
  # For the distilled model, use 8 steps for faster inference.
260
  # For the non-distilled model, use 50 steps for better quality.
README_CN.md CHANGED
@@ -27,7 +27,7 @@
27
 
28
 
29
  ## 🔥🔥🔥 最新动态
30
-
31
  - 2025 年 9 月 8 日:🚀 发布混元图像 2.1 的推理代码与模型权重。
32
 
33
  ## 🎥 示例
@@ -177,11 +177,9 @@ SSAE(结构化语义对齐评估)是一种基于先进多模态大语言模
177
  **硬件和操作系统要求:**
178
  - 支持 CUDA 的 NVIDIA GPU。
179
 
180
- **最低要求:** 36 GB 显存,可用于 2048x2048 图像生成。
181
-
182
- > ✨ 即将推出 FP8 量化模型,推理所需显存将进一步降低,敬请期待 👀!
183
 
184
- > **注意:** 上述内存要求是在启用模型 CPU offloading 的情况下测量的。如果您的 GPU 有足够的显存,可以禁用 CPU offloading 以提高推理速度。
185
 
186
  - 支持的操作系统:Linux。
187
 
@@ -217,7 +215,7 @@ from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeli
217
 
218
  # 支持的 model_name:hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
219
  model_name = "hunyuanimage-v2.1"
220
- pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, torch_dtype='bf16')
221
  pipe = pipe.to("cuda")
222
 
223
  prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
@@ -232,7 +230,7 @@ image = pipe(
232
  # 建议使用上述长宽组合以获得最佳效果。
233
  width=2048,
234
  height=2048,
235
- use_reprompt=True, # 启用提示词增强
236
  use_refiner=True, # 启用精修模型, 以获得更高画质
237
  # 对于蒸馏版模型,建议使用 8 步以加快推理速度
238
  # 对于非蒸馏版模型,建议使用 50 步以获得更高画质
 
27
 
28
 
29
  ## 🔥🔥🔥 最新动态
30
+ - 2025 年 9 月 12 日:🚀 发布 FP8 量化模型!仅需 24GB GPU 显存即可生成 2K 图像!
31
  - 2025 年 9 月 8 日:🚀 发布混元图像 2.1 的推理代码与模型权重。
32
 
33
  ## 🎥 示例
 
177
  **硬件和操作系统要求:**
178
  - 支持 CUDA 的 NVIDIA GPU。
179
 
180
+ **最低要求:** 24 GB 显存,可用于 2048x2048 图像生成。
 
 
181
 
182
+ > **注意:** 上述内存要求是在启用模型 CPU offloading FP8 量化的情况下测量的。如果您的 GPU 有足够的显存,可以禁用 CPU offloading 以提高推理速度。
183
 
184
  - 支持的操作系统:Linux。
185
 
 
215
 
216
  # 支持的 model_name:hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
217
  model_name = "hunyuanimage-v2.1"
218
+ pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, use_fp8=True)
219
  pipe = pipe.to("cuda")
220
 
221
  prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
 
230
  # 建议使用上述长宽组合以获得最佳效果。
231
  width=2048,
232
  height=2048,
233
+ use_reprompt=False, # 启用提示词增强 (可能会导致更高的显存使用)
234
  use_refiner=True, # 启用精修模型, 以获得更高画质
235
  # 对于蒸馏版模型,建议使用 8 步以加快推理速度
236
  # 对于非蒸馏版模型,建议使用 50 步以获得更高画质