update README
Browse files- README.md +6 -7
- README_CN.md +5 -7
README.md
CHANGED
@@ -12,7 +12,6 @@ pipeline_tag: text-to-image
|
|
12 |
extra_gated_eu_disallowed: true
|
13 |
---
|
14 |
|
15 |
-
|
16 |
[中文阅读](./README_CN.md)
|
17 |
|
18 |
<p align="center">
|
@@ -47,8 +46,10 @@ This repo contains PyTorch model definitions, pretrained weights and inference/s
|
|
47 |
|
48 |
## 🔥🔥🔥 Latest Updates
|
49 |
|
|
|
50 |
- September 8, 2025: 🚀 Released inference code and model weights for HunyuanImage-2.1.
|
51 |
|
|
|
52 |
## 🎥 Demo
|
53 |
|
54 |
<div align="center">
|
@@ -203,11 +204,9 @@ From the results, HunyuanImage 2.1 achieved a relative win rate of -1.36% agains
|
|
203 |
**Hardware and OS Requirements:**
|
204 |
- NVIDIA GPU with CUDA support.
|
205 |
|
206 |
-
**Minimum requrement for now:**
|
207 |
-
|
208 |
-
> ✨ FP8-quantized models are coming soon, enabling even lower GPU memory requirements for inference, stay tuned 👀!
|
209 |
|
210 |
-
> **Note:** The memory requirements above are measured with model CPU offloading enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
|
211 |
- Supported operating system: Linux.
|
212 |
|
213 |
|
@@ -240,7 +239,7 @@ from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeli
|
|
240 |
|
241 |
# Supported model_name: hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
|
242 |
model_name = "hunyuanimage-v2.1"
|
243 |
-
pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name,
|
244 |
pipe = pipe.to("cuda")
|
245 |
|
246 |
prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
|
@@ -255,7 +254,7 @@ image = pipe(
|
|
255 |
# Please use one of the above width/height pairs for best results.
|
256 |
width=2048,
|
257 |
height=2048,
|
258 |
-
use_reprompt=
|
259 |
use_refiner=True, # Enable refiner model
|
260 |
# For the distilled model, use 8 steps for faster inference.
|
261 |
# For the non-distilled model, use 50 steps for better quality.
|
|
|
12 |
extra_gated_eu_disallowed: true
|
13 |
---
|
14 |
|
|
|
15 |
[中文阅读](./README_CN.md)
|
16 |
|
17 |
<p align="center">
|
|
|
46 |
|
47 |
## 🔥🔥🔥 Latest Updates
|
48 |
|
49 |
+
- September 12, 2025: 🚀 Released FP8 quantized models! Making it possible to generate 2K images with only 24GB GPU memory!
|
50 |
- September 8, 2025: 🚀 Released inference code and model weights for HunyuanImage-2.1.
|
51 |
|
52 |
+
|
53 |
## 🎥 Demo
|
54 |
|
55 |
<div align="center">
|
|
|
204 |
**Hardware and OS Requirements:**
|
205 |
- NVIDIA GPU with CUDA support.
|
206 |
|
207 |
+
**Minimum requrement for now:** 24 GB GPU memory for 2048x2048 image generation.
|
|
|
|
|
208 |
|
209 |
+
> **Note:** The memory requirements above are measured with model CPU offloading and FP8 quantization enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
|
210 |
- Supported operating system: Linux.
|
211 |
|
212 |
|
|
|
239 |
|
240 |
# Supported model_name: hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
|
241 |
model_name = "hunyuanimage-v2.1"
|
242 |
+
pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, use_fp8=True)
|
243 |
pipe = pipe.to("cuda")
|
244 |
|
245 |
prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
|
|
|
254 |
# Please use one of the above width/height pairs for best results.
|
255 |
width=2048,
|
256 |
height=2048,
|
257 |
+
use_reprompt=False, # Enable prompt enhancement (which may result in higher GPU memory usage)
|
258 |
use_refiner=True, # Enable refiner model
|
259 |
# For the distilled model, use 8 steps for faster inference.
|
260 |
# For the non-distilled model, use 50 steps for better quality.
|
README_CN.md
CHANGED
@@ -27,7 +27,7 @@
|
|
27 |
|
28 |
|
29 |
## 🔥🔥🔥 最新动态
|
30 |
-
|
31 |
- 2025 年 9 月 8 日:🚀 发布混元图像 2.1 的推理代码与模型权重。
|
32 |
|
33 |
## 🎥 示例
|
@@ -177,11 +177,9 @@ SSAE(结构化语义对齐评估)是一种基于先进多模态大语言模
|
|
177 |
**硬件和操作系统要求:**
|
178 |
- 支持 CUDA 的 NVIDIA GPU。
|
179 |
|
180 |
-
**最低要求:**
|
181 |
-
|
182 |
-
> ✨ 即将推出 FP8 量化模型,推理所需显存将进一步降低,敬请期待 👀!
|
183 |
|
184 |
-
> **注意:** 上述内存要求是在启用模型 CPU offloading
|
185 |
|
186 |
- 支持的操作系统:Linux。
|
187 |
|
@@ -217,7 +215,7 @@ from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeli
|
|
217 |
|
218 |
# 支持的 model_name:hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
|
219 |
model_name = "hunyuanimage-v2.1"
|
220 |
-
pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name,
|
221 |
pipe = pipe.to("cuda")
|
222 |
|
223 |
prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
|
@@ -232,7 +230,7 @@ image = pipe(
|
|
232 |
# 建议使用上述长宽组合以获得最佳效果。
|
233 |
width=2048,
|
234 |
height=2048,
|
235 |
-
use_reprompt=
|
236 |
use_refiner=True, # 启用精修模型, 以获得更高画质
|
237 |
# 对于蒸馏版模型,建议使用 8 步以加快推理速度
|
238 |
# 对于非蒸馏版模型,建议使用 50 步以获得更高画质
|
|
|
27 |
|
28 |
|
29 |
## 🔥🔥🔥 最新动态
|
30 |
+
- 2025 年 9 月 12 日:🚀 发布 FP8 量化模型!仅需 24GB GPU 显存即可生成 2K 图像!
|
31 |
- 2025 年 9 月 8 日:🚀 发布混元图像 2.1 的推理代码与模型权重。
|
32 |
|
33 |
## 🎥 示例
|
|
|
177 |
**硬件和操作系统要求:**
|
178 |
- 支持 CUDA 的 NVIDIA GPU。
|
179 |
|
180 |
+
**最低要求:** 24 GB 显存,可用于 2048x2048 图像生成。
|
|
|
|
|
181 |
|
182 |
+
> **注意:** 上述内存要求是在启用模型 CPU offloading 和 FP8 量化的情况下测量的。如果您的 GPU 有足够的显存,可以禁用 CPU offloading 以提高推理速度。
|
183 |
|
184 |
- 支持的操作系统:Linux。
|
185 |
|
|
|
215 |
|
216 |
# 支持的 model_name:hunyuanimage-v2.1, hunyuanimage-v2.1-distilled
|
217 |
model_name = "hunyuanimage-v2.1"
|
218 |
+
pipe = HunyuanImagePipeline.from_pretrained(model_name=model_name, use_fp8=True)
|
219 |
pipe = pipe.to("cuda")
|
220 |
|
221 |
prompt = "A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
|
|
|
230 |
# 建议使用上述长宽组合以获得最佳效果。
|
231 |
width=2048,
|
232 |
height=2048,
|
233 |
+
use_reprompt=False, # 启用提示词增强 (可能会导致更高的显存使用)
|
234 |
use_refiner=True, # 启用精修模型, 以获得更高画质
|
235 |
# 对于蒸馏版模型,建议使用 8 步以加快推理速度
|
236 |
# 对于非蒸馏版模型,建议使用 50 步以获得更高画质
|