KevinNg99 commited on
Commit
147009b
·
1 Parent(s): 002d01e

Update README

Browse files
Files changed (2) hide show
  1. README.md +13 -10
  2. README_CN.md +14 -6
README.md CHANGED
@@ -11,8 +11,6 @@ tags:
11
  pipeline_tag: text-to-image
12
  extra_gated_eu_disallowed: true
13
  ---
14
-
15
-
16
  [中文阅读](./README_CN.md)
17
 
18
  <p align="center">
@@ -36,6 +34,9 @@ extra_gated_eu_disallowed: true
36
  <a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a>
37
  </div>
38
 
 
 
 
39
 
40
  -----
41
 
@@ -199,10 +200,13 @@ From the results, HunyuanImage 2.1 achieved a relative win rate of -1.36% agains
199
 
200
  **Hardware and OS Requirements:**
201
  - NVIDIA GPU with CUDA support.
202
- - **Minimum:** 59 GB GPU memory for 2048x2048 image generation (batch size = 1).
 
 
 
 
203
  - Supported operating system: Linux.
204
 
205
- > **Note:** The memory requirements above are measured with model CPU offloading enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
206
 
207
  ## 🛠️ Dependencies and Installation
208
 
@@ -223,7 +227,6 @@ pip install flash-attn==2.7.3 --no-build-isolation
223
  The details of download pretrained models are shown [here](checkpoints-download.md).
224
 
225
  ## 🔑 Usage
226
-
227
  HunyuanImage-2.1 only supports 2K image generation (e.g. 2048x2048 for 1:1 images, 2560x1536 for 16:9 images, etc.).
228
  Generating images with 1K resolution will result in artifacts.
229
  Additionally, we recommend using the full generation pipeline for better quality (i.e. enabling prompt enhancement and refinment).
@@ -250,9 +253,9 @@ image = pipe(
250
  width=2048,
251
  height=2048,
252
  use_reprompt=True, # Enable prompt enhancement
253
- use_refiner=True, # Enable refiner model
254
  # For the distilled model, use 8 steps for faster inference.
255
- # For the non-distilled model, use 50 steps for better quality
256
  num_inference_steps=8 if "distilled" in model_name else 50,
257
  guidance_scale=3.5,
258
  shift=5,
@@ -283,9 +286,9 @@ We would like to thank the following open-source projects and communities for th
283
  ## Github Star History
284
  <a href="https://star-history.com/#Tencent-Hunyuan/HunyuanImage-2.1&Date">
285
  <picture>
286
- <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date&theme=dark" />
287
- <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date" />
288
- <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date" />
289
  </picture>
290
  </a>
291
 
 
11
  pipeline_tag: text-to-image
12
  extra_gated_eu_disallowed: true
13
  ---
 
 
14
  [中文阅读](./README_CN.md)
15
 
16
  <p align="center">
 
34
  <a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a>
35
  </div>
36
 
37
+ <p align="center">
38
+ 👋 Join our <a href="assets/WECHAT.md" target="_blank">WeChat</a>
39
+ </p>
40
 
41
  -----
42
 
 
200
 
201
  **Hardware and OS Requirements:**
202
  - NVIDIA GPU with CUDA support.
203
+ - **Minimum requrement for now:** 36 GB GPU memory for 2048x2048 image generation.
204
+
205
+ > ✨ An FP8-quantized model is coming soon, enabling even lower GPU memory requirements for inference, stay tuned 👀!
206
+
207
+ > **Note:** The memory requirements above are measured with model CPU offloading enabled. If your GPU has sufficient memory, you may disable offloading for improved inference speed.
208
  - Supported operating system: Linux.
209
 
 
210
 
211
  ## 🛠️ Dependencies and Installation
212
 
 
227
  The details of download pretrained models are shown [here](checkpoints-download.md).
228
 
229
  ## 🔑 Usage
 
230
  HunyuanImage-2.1 only supports 2K image generation (e.g. 2048x2048 for 1:1 images, 2560x1536 for 16:9 images, etc.).
231
  Generating images with 1K resolution will result in artifacts.
232
  Additionally, we recommend using the full generation pipeline for better quality (i.e. enabling prompt enhancement and refinment).
 
253
  width=2048,
254
  height=2048,
255
  use_reprompt=True, # Enable prompt enhancement
256
+ use_refiner=True, # Enable refiner model
257
  # For the distilled model, use 8 steps for faster inference.
258
+ # For the non-distilled model, use 50 steps for better quality.
259
  num_inference_steps=8 if "distilled" in model_name else 50,
260
  guidance_scale=3.5,
261
  shift=5,
 
286
  ## Github Star History
287
  <a href="https://star-history.com/#Tencent-Hunyuan/HunyuanImage-2.1&Date">
288
  <picture>
289
+ <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date1&theme=dark" />
290
+ <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date1" />
291
+ <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent-Hunyuan/HunyuanImage-2.1&type=Date1" />
292
  </picture>
293
  </a>
294
 
README_CN.md CHANGED
@@ -15,6 +15,11 @@
15
  <a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a>
16
  </div>
17
 
 
 
 
 
 
18
  ----
19
 
20
 
@@ -171,11 +176,14 @@ SSAE(结构化语义对齐评估)是一种基于先进多模态大语言模
171
 
172
  **硬件和操作系统要求:**
173
  - 支持 CUDA 的 NVIDIA GPU。
174
- - **最低要求:** 59 GB 显存用于 2048x2048 图像生成(batch size = 1)。
 
 
 
 
175
  - 支持的操作系统:Linux。
176
 
177
 
178
- > **注意:** 上述内存要求是在启用模型 CPU offloading 的情况下测量的。如果您的 GPU 有足够的显存,可以禁用 CPU offloading 以提高推理速度。
179
 
180
  ## 🛠️ 依赖与安装
181
 
@@ -193,14 +201,14 @@ pip install flash-attn==2.7.3 --no-build-isolation
193
 
194
  ## 🧱 模型下载
195
 
196
- 模型的下载与说明请参考[这里](ckpts/checkpoints-download.md)。
197
 
198
  ## 🔑 使用
199
-
200
  HunyuanImage-2.1 仅支持 2K 分辨率图像生成(如 1:1 时为 2048x2048,16:9 时为 2560x1536 等)。
201
  使用其1K分辨率生成图像可能会带来画质下降与瑕疵。
202
  此外,我们建议使用完整的生成流程以获得更高画质(即启用提示词增强和精修功能)。
203
 
 
204
  ```python
205
  import torch
206
  from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeline
@@ -223,8 +231,8 @@ image = pipe(
223
  width=2048,
224
  height=2048,
225
  use_reprompt=True, # 启用提示词增强
226
- use_refiner=True, # 启用精修模型, 以获得更高画质
227
- # 对于蒸馏版模型,建议使用 8 步以加快推理速度;
228
  # 对于非蒸馏版模型,建议使用 50 步以获得更高画质
229
  num_inference_steps=8 if "distilled" in model_name else 50,
230
  guidance_scale=3.5,
 
15
  <a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a>
16
  </div>
17
 
18
+
19
+ <p align="center">
20
+ 👋 加入我们的 <a href="assets/WECHAT.md" target="_blank">WeChat</a>
21
+ </p>
22
+
23
  ----
24
 
25
 
 
176
 
177
  **硬件和操作系统要求:**
178
  - 支持 CUDA 的 NVIDIA GPU。
179
+ - **最低要求:** 36 GB 显存,可用于 2048x2048 图像生成。
180
+
181
+ > ✨ 即将推出 FP8 量化模型,推理所需显存将进一步降低,敬请期待 👀!
182
+
183
+ > **注意:** 上述内存要求是在启用模型 CPU offloading 的情况下测量的。如果您的 GPU 有足够的显存,可以禁用 CPU offloading 以提高推理速度。
184
  - 支持的操作系统:Linux。
185
 
186
 
 
187
 
188
  ## 🛠️ 依赖与安装
189
 
 
201
 
202
  ## 🧱 模型下载
203
 
204
+ 模型的下载与说明请参考[这里](checkpoints-download.md)。
205
 
206
  ## 🔑 使用
 
207
  HunyuanImage-2.1 仅支持 2K 分辨率图像生成(如 1:1 时为 2048x2048,16:9 时为 2560x1536 等)。
208
  使用其1K分辨率生成图像可能会带来画质下降与瑕疵。
209
  此外,我们建议使用完整的生成流程以获得更高画质(即启用提示词增强和精修功能)。
210
 
211
+
212
  ```python
213
  import torch
214
  from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeline
 
231
  width=2048,
232
  height=2048,
233
  use_reprompt=True, # 启用提示词增强
234
+ use_refiner=True, # 启用精修模型, 以获得更高画质
235
+ # 对于蒸馏版模型,建议使用 8 步以加快推理速度
236
  # 对于非蒸馏版模型,建议使用 50 步以获得更高画质
237
  num_inference_steps=8 if "distilled" in model_name else 50,
238
  guidance_scale=3.5,