# boolq LoRA Models This repository contains LoRA (Low-Rank Adaptation) models trained on the boolq dataset. ## Models in this repository: - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123 - `llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_boolq_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123 ## Usage To use these LoRA models, you'll need the `peft` library: ```bash pip install peft transformers torch ``` Example usage: ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer # Load base model base_model_name = "your-base-model" # Replace with actual base model model = AutoModelForCausalLM.from_pretrained(base_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) # Load LoRA adapter model = PeftModel.from_pretrained( model, "supergoose/boolq", subfolder="model_name_here" # Replace with specific model folder ) # Use the model inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs) ``` ## Training Details - Dataset: boolq - Training framework: LoRA/PEFT - Models included: 7 variants ## Files Structure Each model folder contains: - `adapter_config.json`: LoRA configuration - `adapter_model.safetensors`: LoRA weights - `tokenizer.json`: Tokenizer configuration - Additional training artifacts --- *Generated automatically by LoRA uploader script*