Update README.md
Browse files
README.md
CHANGED
|
@@ -24,21 +24,30 @@ pip install transformers accelerate peft
|
|
| 24 |
```
|
| 25 |
|
| 26 |
Load the model.
|
| 27 |
-
```
|
| 28 |
-
from transformers
|
| 29 |
from peft import PeftModel, PeftConfig
|
| 30 |
|
| 31 |
repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024"
|
| 32 |
config = PeftConfig.from_pretrained(repo_id, device_map="auto")
|
| 33 |
-
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
|
|
|
|
| 34 |
model = PeftModel.from_pretrained(model, repo_id, device_map="auto")
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path,
|
|
|
|
| 36 |
|
| 37 |
# Test input
|
| 38 |
-
test_input = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Generate response
|
| 41 |
-
inputs = tokenizer(
|
| 42 |
outputs = model.generate(
|
| 43 |
**inputs,
|
| 44 |
max_new_tokens=7,
|
|
@@ -48,8 +57,8 @@ outputs = model.generate(
|
|
| 48 |
top_p=None,
|
| 49 |
top_k=None,
|
| 50 |
)
|
| 51 |
-
|
| 52 |
-
response =
|
| 53 |
|
| 54 |
print("Test Input:", test_input)
|
| 55 |
print("Model Response:", response)
|
|
|
|
| 24 |
```
|
| 25 |
|
| 26 |
Load the model.
|
| 27 |
+
```python
|
| 28 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 29 |
from peft import PeftModel, PeftConfig
|
| 30 |
|
| 31 |
repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024"
|
| 32 |
config = PeftConfig.from_pretrained(repo_id, device_map="auto")
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
|
| 34 |
+
device_map="auto")
|
| 35 |
model = PeftModel.from_pretrained(model, repo_id, device_map="auto")
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path,
|
| 37 |
+
device_map="auto")
|
| 38 |
|
| 39 |
# Test input
|
| 40 |
+
test_input = """Welche ICD-10-Kodierung wird für die Tumordiagnose "Bronchialkarzinom, Hauptbronchus" verwendet? Antworte nur mit dem ICD-10 Code."""
|
| 41 |
+
|
| 42 |
+
input_str = tokenizer.apply_chat_template(
|
| 43 |
+
[{"role": "user", "content": test_input}],
|
| 44 |
+
tokenize=False,
|
| 45 |
+
add_generation_prompt=True,
|
| 46 |
+
enable_thinking=False
|
| 47 |
+
)
|
| 48 |
|
| 49 |
# Generate response
|
| 50 |
+
inputs = tokenizer(input_str, return_tensors="pt").to("cuda")
|
| 51 |
outputs = model.generate(
|
| 52 |
**inputs,
|
| 53 |
max_new_tokens=7,
|
|
|
|
| 57 |
top_p=None,
|
| 58 |
top_k=None,
|
| 59 |
)
|
| 60 |
+
generated_tokens = outputs[0, inputs["input_ids"].shape[1]:]
|
| 61 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 62 |
|
| 63 |
print("Test Input:", test_input)
|
| 64 |
print("Model Response:", response)
|