mioskomi commited on
Commit
a7779e9
·
verified ·
1 Parent(s): 9930560

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -8
README.md CHANGED
@@ -24,21 +24,30 @@ pip install transformers accelerate peft
24
  ```
25
 
26
  Load the model.
27
- ```{python}
28
- from transformers, import AutoTokenizer, AutoModelForCausalLM
29
  from peft import PeftModel, PeftConfig
30
 
31
  repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024"
32
  config = PeftConfig.from_pretrained(repo_id, device_map="auto")
33
- model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="auto")
 
34
  model = PeftModel.from_pretrained(model, repo_id, device_map="auto")
35
- tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, device_map="auto")
 
36
 
37
  # Test input
38
- test_input = """Was ist der ICD-10-Code für die Tumordiagnose Bronchialkarzinom, Hauptbronchus“? Antworte nur kurz mit dem ICD-10 Code."""
 
 
 
 
 
 
 
39
 
40
  # Generate response
41
- inputs = tokenizer(test_input, return_tensors="pt").to("cuda")
42
  outputs = model.generate(
43
  **inputs,
44
  max_new_tokens=7,
@@ -48,8 +57,8 @@ outputs = model.generate(
48
  top_p=None,
49
  top_k=None,
50
  )
51
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
52
- response = response[len(test_input):].strip()
53
 
54
  print("Test Input:", test_input)
55
  print("Model Response:", response)
 
24
  ```
25
 
26
  Load the model.
27
+ ```python
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM
29
  from peft import PeftModel, PeftConfig
30
 
31
  repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024"
32
  config = PeftConfig.from_pretrained(repo_id, device_map="auto")
33
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
34
+ device_map="auto")
35
  model = PeftModel.from_pretrained(model, repo_id, device_map="auto")
36
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path,
37
+ device_map="auto")
38
 
39
  # Test input
40
+ test_input = """Welche ICD-10-Kodierung wird für die Tumordiagnose "Bronchialkarzinom, Hauptbronchus" verwendet? Antworte nur mit dem ICD-10 Code."""
41
+
42
+ input_str = tokenizer.apply_chat_template(
43
+ [{"role": "user", "content": test_input}],
44
+ tokenize=False,
45
+ add_generation_prompt=True,
46
+ enable_thinking=False
47
+ )
48
 
49
  # Generate response
50
+ inputs = tokenizer(input_str, return_tensors="pt").to("cuda")
51
  outputs = model.generate(
52
  **inputs,
53
  max_new_tokens=7,
 
57
  top_p=None,
58
  top_k=None,
59
  )
60
+ generated_tokens = outputs[0, inputs["input_ids"].shape[1]:]
61
+ response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
62
 
63
  print("Test Input:", test_input)
64
  print("Model Response:", response)