Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import logging | |
from app.ml_models.classifier_loader import ClassifierLoader | |
logger = logging.getLogger(__name__) | |
class Classifier: | |
def __init__(self, model_name: str = "toxic-bert") -> None: | |
self.model = None | |
self.tokenizer = None | |
self.model_name = model_name | |
self.classifier = None | |
def initialize_classifier(self) -> None: | |
loader = ClassifierLoader(self.model_name) | |
self.model = loader.load_model() | |
self.tokenizer = loader.load_tokenizer() | |
self.classifier = pipeline( | |
"text-classification", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
device=-1, | |
top_k=None, | |
) | |
def predict_nsfw(self, content: str) -> dict: | |
if self.classifier is None: | |
raise RuntimeError( | |
"Model not initialized. Please call `initialize_classifier()` first." | |
) | |
results = self.classifier(content) | |
prediction = {} | |
for result in results[0]: | |
prediction[result["label"]] = result["score"] | |
return prediction | |