File size: 1,551 Bytes
d68e65a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from app.ml_models.classifier_path_loader import ClassifierPathLoader
import logging
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification, pipeline


logger = logging.getLogger(__name__)


class ClassifierLoader:
    def __init__(self, model_name: str):
        self.model_name = model_name
        self.model = None
        self.tokenizer = None

        path_loader = ClassifierPathLoader()
        path_loader.set_model(self.model_name)
        self.model_path = path_loader.get_model_path()

        # If model doesn't exist, download it
        if not self.model_path.exists():
            model_name = "unitary/toxic-bert"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForSequenceClassification.from_pretrained(model_name)

            tokenizer.save_pretrained(self.model_path)
            model.save_pretrained(self.model_path)

    def load_model(self):
        if self.model is None:
            self.model = AutoModelForSequenceClassification.from_pretrained(
                self.model_path
            )
            logger.info("[✅] Model loaded successfully.")
        return self.model

    def load_tokenizer(self):
        if self.tokenizer is None:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
            logger.info("[✅] Tokenizer loaded successfully.")
        return self.tokenizer