Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import ConvModule | |
| from mmengine.model import BaseModule | |
| from mmengine.runner import CheckpointLoader | |
| from torch import Tensor | |
| from mmseg.registry import MODELS | |
| from mmseg.utils import OptConfigType | |
| from ..utils import DAPPM, PAPPM, BasicBlock, Bottleneck | |
| class PagFM(BaseModule): | |
| """Pixel-attention-guided fusion module. | |
| Args: | |
| in_channels (int): The number of input channels. | |
| channels (int): The number of channels. | |
| after_relu (bool): Whether to use ReLU before attention. | |
| Default: False. | |
| with_channel (bool): Whether to use channel attention. | |
| Default: False. | |
| upsample_mode (str): The mode of upsample. Default: 'bilinear'. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(typ='ReLU', inplace=True). | |
| init_cfg (dict): Config dict for initialization. Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels: int, | |
| channels: int, | |
| after_relu: bool = False, | |
| with_channel: bool = False, | |
| upsample_mode: str = 'bilinear', | |
| norm_cfg: OptConfigType = dict(type='BN'), | |
| act_cfg: OptConfigType = dict(typ='ReLU', inplace=True), | |
| init_cfg: OptConfigType = None): | |
| super().__init__(init_cfg) | |
| self.after_relu = after_relu | |
| self.with_channel = with_channel | |
| self.upsample_mode = upsample_mode | |
| self.f_i = ConvModule( | |
| in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
| self.f_p = ConvModule( | |
| in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
| if with_channel: | |
| self.up = ConvModule( | |
| channels, in_channels, 1, norm_cfg=norm_cfg, act_cfg=None) | |
| if after_relu: | |
| self.relu = MODELS.build(act_cfg) | |
| def forward(self, x_p: Tensor, x_i: Tensor) -> Tensor: | |
| """Forward function. | |
| Args: | |
| x_p (Tensor): The featrue map from P branch. | |
| x_i (Tensor): The featrue map from I branch. | |
| Returns: | |
| Tensor: The feature map with pixel-attention-guided fusion. | |
| """ | |
| if self.after_relu: | |
| x_p = self.relu(x_p) | |
| x_i = self.relu(x_i) | |
| f_i = self.f_i(x_i) | |
| f_i = F.interpolate( | |
| f_i, | |
| size=x_p.shape[2:], | |
| mode=self.upsample_mode, | |
| align_corners=False) | |
| f_p = self.f_p(x_p) | |
| if self.with_channel: | |
| sigma = torch.sigmoid(self.up(f_p * f_i)) | |
| else: | |
| sigma = torch.sigmoid(torch.sum(f_p * f_i, dim=1).unsqueeze(1)) | |
| x_i = F.interpolate( | |
| x_i, | |
| size=x_p.shape[2:], | |
| mode=self.upsample_mode, | |
| align_corners=False) | |
| out = sigma * x_i + (1 - sigma) * x_p | |
| return out | |
| class Bag(BaseModule): | |
| """Boundary-attention-guided fusion module. | |
| Args: | |
| in_channels (int): The number of input channels. | |
| out_channels (int): The number of output channels. | |
| kernel_size (int): The kernel size of the convolution. Default: 3. | |
| padding (int): The padding of the convolution. Default: 1. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU', inplace=True). | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: dict(order=('norm', 'act', 'conv')). | |
| init_cfg (dict): Config dict for initialization. Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int = 3, | |
| padding: int = 1, | |
| norm_cfg: OptConfigType = dict(type='BN'), | |
| act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
| conv_cfg: OptConfigType = dict(order=('norm', 'act', 'conv')), | |
| init_cfg: OptConfigType = None): | |
| super().__init__(init_cfg) | |
| self.conv = ConvModule( | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| padding=padding, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| **conv_cfg) | |
| def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor: | |
| """Forward function. | |
| Args: | |
| x_p (Tensor): The featrue map from P branch. | |
| x_i (Tensor): The featrue map from I branch. | |
| x_d (Tensor): The featrue map from D branch. | |
| Returns: | |
| Tensor: The feature map with boundary-attention-guided fusion. | |
| """ | |
| sigma = torch.sigmoid(x_d) | |
| return self.conv(sigma * x_p + (1 - sigma) * x_i) | |
| class LightBag(BaseModule): | |
| """Light Boundary-attention-guided fusion module. | |
| Args: | |
| in_channels (int): The number of input channels. | |
| out_channels (int): The number of output channels. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. Default: None. | |
| init_cfg (dict): Config dict for initialization. Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels: int, | |
| out_channels: int, | |
| norm_cfg: OptConfigType = dict(type='BN'), | |
| act_cfg: OptConfigType = None, | |
| init_cfg: OptConfigType = None): | |
| super().__init__(init_cfg) | |
| self.f_p = ConvModule( | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| self.f_i = ConvModule( | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| def forward(self, x_p: Tensor, x_i: Tensor, x_d: Tensor) -> Tensor: | |
| """Forward function. | |
| Args: | |
| x_p (Tensor): The featrue map from P branch. | |
| x_i (Tensor): The featrue map from I branch. | |
| x_d (Tensor): The featrue map from D branch. | |
| Returns: | |
| Tensor: The feature map with light boundary-attention-guided | |
| fusion. | |
| """ | |
| sigma = torch.sigmoid(x_d) | |
| f_p = self.f_p((1 - sigma) * x_i + x_p) | |
| f_i = self.f_i(x_i + sigma * x_p) | |
| return f_p + f_i | |
| class PIDNet(BaseModule): | |
| """PIDNet backbone. | |
| This backbone is the implementation of `PIDNet: A Real-time Semantic | |
| Segmentation Network Inspired from PID Controller | |
| <https://arxiv.org/abs/2206.02066>`_. | |
| Modified from https://github.com/XuJiacong/PIDNet. | |
| Licensed under the MIT License. | |
| Args: | |
| in_channels (int): The number of input channels. Default: 3. | |
| channels (int): The number of channels in the stem layer. Default: 64. | |
| ppm_channels (int): The number of channels in the PPM layer. | |
| Default: 96. | |
| num_stem_blocks (int): The number of blocks in the stem layer. | |
| Default: 2. | |
| num_branch_blocks (int): The number of blocks in the branch layer. | |
| Default: 3. | |
| align_corners (bool): The align_corners argument of F.interpolate. | |
| Default: False. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN'). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='ReLU', inplace=True). | |
| init_cfg (dict): Config dict for initialization. Default: None. | |
| """ | |
| def __init__(self, | |
| in_channels: int = 3, | |
| channels: int = 64, | |
| ppm_channels: int = 96, | |
| num_stem_blocks: int = 2, | |
| num_branch_blocks: int = 3, | |
| align_corners: bool = False, | |
| norm_cfg: OptConfigType = dict(type='BN'), | |
| act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
| init_cfg: OptConfigType = None, | |
| **kwargs): | |
| super().__init__(init_cfg) | |
| self.norm_cfg = norm_cfg | |
| self.act_cfg = act_cfg | |
| self.align_corners = align_corners | |
| # stem layer | |
| self.stem = self._make_stem_layer(in_channels, channels, | |
| num_stem_blocks) | |
| self.relu = nn.ReLU() | |
| # I Branch | |
| self.i_branch_layers = nn.ModuleList() | |
| for i in range(3): | |
| self.i_branch_layers.append( | |
| self._make_layer( | |
| block=BasicBlock if i < 2 else Bottleneck, | |
| in_channels=channels * 2**(i + 1), | |
| channels=channels * 8 if i > 0 else channels * 4, | |
| num_blocks=num_branch_blocks if i < 2 else 2, | |
| stride=2)) | |
| # P Branch | |
| self.p_branch_layers = nn.ModuleList() | |
| for i in range(3): | |
| self.p_branch_layers.append( | |
| self._make_layer( | |
| block=BasicBlock if i < 2 else Bottleneck, | |
| in_channels=channels * 2, | |
| channels=channels * 2, | |
| num_blocks=num_stem_blocks if i < 2 else 1)) | |
| self.compression_1 = ConvModule( | |
| channels * 4, | |
| channels * 2, | |
| kernel_size=1, | |
| bias=False, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.compression_2 = ConvModule( | |
| channels * 8, | |
| channels * 2, | |
| kernel_size=1, | |
| bias=False, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.pag_1 = PagFM(channels * 2, channels) | |
| self.pag_2 = PagFM(channels * 2, channels) | |
| # D Branch | |
| if num_stem_blocks == 2: | |
| self.d_branch_layers = nn.ModuleList([ | |
| self._make_single_layer(BasicBlock, channels * 2, channels), | |
| self._make_layer(Bottleneck, channels, channels, 1) | |
| ]) | |
| channel_expand = 1 | |
| spp_module = PAPPM | |
| dfm_module = LightBag | |
| act_cfg_dfm = None | |
| else: | |
| self.d_branch_layers = nn.ModuleList([ | |
| self._make_single_layer(BasicBlock, channels * 2, | |
| channels * 2), | |
| self._make_single_layer(BasicBlock, channels * 2, channels * 2) | |
| ]) | |
| channel_expand = 2 | |
| spp_module = DAPPM | |
| dfm_module = Bag | |
| act_cfg_dfm = act_cfg | |
| self.diff_1 = ConvModule( | |
| channels * 4, | |
| channels * channel_expand, | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.diff_2 = ConvModule( | |
| channels * 8, | |
| channels * 2, | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| norm_cfg=norm_cfg, | |
| act_cfg=None) | |
| self.spp = spp_module( | |
| channels * 16, ppm_channels, channels * 4, num_scales=5) | |
| self.dfm = dfm_module( | |
| channels * 4, channels * 4, norm_cfg=norm_cfg, act_cfg=act_cfg_dfm) | |
| self.d_branch_layers.append( | |
| self._make_layer(Bottleneck, channels * 2, channels * 2, 1)) | |
| def _make_stem_layer(self, in_channels: int, channels: int, | |
| num_blocks: int) -> nn.Sequential: | |
| """Make stem layer. | |
| Args: | |
| in_channels (int): Number of input channels. | |
| channels (int): Number of output channels. | |
| num_blocks (int): Number of blocks. | |
| Returns: | |
| nn.Sequential: The stem layer. | |
| """ | |
| layers = [ | |
| ConvModule( | |
| in_channels, | |
| channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg), | |
| ConvModule( | |
| channels, | |
| channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg) | |
| ] | |
| layers.append( | |
| self._make_layer(BasicBlock, channels, channels, num_blocks)) | |
| layers.append(nn.ReLU()) | |
| layers.append( | |
| self._make_layer( | |
| BasicBlock, channels, channels * 2, num_blocks, stride=2)) | |
| layers.append(nn.ReLU()) | |
| return nn.Sequential(*layers) | |
| def _make_layer(self, | |
| block: BasicBlock, | |
| in_channels: int, | |
| channels: int, | |
| num_blocks: int, | |
| stride: int = 1) -> nn.Sequential: | |
| """Make layer for PIDNet backbone. | |
| Args: | |
| block (BasicBlock): Basic block. | |
| in_channels (int): Number of input channels. | |
| channels (int): Number of output channels. | |
| num_blocks (int): Number of blocks. | |
| stride (int): Stride of the first block. Default: 1. | |
| Returns: | |
| nn.Sequential: The Branch Layer. | |
| """ | |
| downsample = None | |
| if stride != 1 or in_channels != channels * block.expansion: | |
| downsample = ConvModule( | |
| in_channels, | |
| channels * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=None) | |
| layers = [block(in_channels, channels, stride, downsample)] | |
| in_channels = channels * block.expansion | |
| for i in range(1, num_blocks): | |
| layers.append( | |
| block( | |
| in_channels, | |
| channels, | |
| stride=1, | |
| act_cfg_out=None if i == num_blocks - 1 else self.act_cfg)) | |
| return nn.Sequential(*layers) | |
| def _make_single_layer(self, | |
| block: Union[BasicBlock, Bottleneck], | |
| in_channels: int, | |
| channels: int, | |
| stride: int = 1) -> nn.Module: | |
| """Make single layer for PIDNet backbone. | |
| Args: | |
| block (BasicBlock or Bottleneck): Basic block or Bottleneck. | |
| in_channels (int): Number of input channels. | |
| channels (int): Number of output channels. | |
| stride (int): Stride of the first block. Default: 1. | |
| Returns: | |
| nn.Module | |
| """ | |
| downsample = None | |
| if stride != 1 or in_channels != channels * block.expansion: | |
| downsample = ConvModule( | |
| in_channels, | |
| channels * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=None) | |
| return block( | |
| in_channels, channels, stride, downsample, act_cfg_out=None) | |
| def init_weights(self): | |
| """Initialize the weights in backbone. | |
| Since the D branch is not initialized by the pre-trained model, we | |
| initialize it with the same method as the ResNet. | |
| """ | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_( | |
| m.weight, mode='fan_out', nonlinearity='relu') | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| if self.init_cfg is not None: | |
| assert 'checkpoint' in self.init_cfg, f'Only support ' \ | |
| f'specify `Pretrained` in ' \ | |
| f'`init_cfg` in ' \ | |
| f'{self.__class__.__name__} ' | |
| ckpt = CheckpointLoader.load_checkpoint( | |
| self.init_cfg['checkpoint'], map_location='cpu') | |
| self.load_state_dict(ckpt, strict=False) | |
| def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor]]: | |
| """Forward function. | |
| Args: | |
| x (Tensor): Input tensor with shape (B, C, H, W). | |
| Returns: | |
| Tensor or tuple[Tensor]: If self.training is True, return | |
| tuple[Tensor], else return Tensor. | |
| """ | |
| w_out = x.shape[-1] // 8 | |
| h_out = x.shape[-2] // 8 | |
| # stage 0-2 | |
| x = self.stem(x) | |
| # stage 3 | |
| x_i = self.relu(self.i_branch_layers[0](x)) | |
| x_p = self.p_branch_layers[0](x) | |
| x_d = self.d_branch_layers[0](x) | |
| comp_i = self.compression_1(x_i) | |
| x_p = self.pag_1(x_p, comp_i) | |
| diff_i = self.diff_1(x_i) | |
| x_d += F.interpolate( | |
| diff_i, | |
| size=[h_out, w_out], | |
| mode='bilinear', | |
| align_corners=self.align_corners) | |
| if self.training: | |
| temp_p = x_p.clone() | |
| # stage 4 | |
| x_i = self.relu(self.i_branch_layers[1](x_i)) | |
| x_p = self.p_branch_layers[1](self.relu(x_p)) | |
| x_d = self.d_branch_layers[1](self.relu(x_d)) | |
| comp_i = self.compression_2(x_i) | |
| x_p = self.pag_2(x_p, comp_i) | |
| diff_i = self.diff_2(x_i) | |
| x_d += F.interpolate( | |
| diff_i, | |
| size=[h_out, w_out], | |
| mode='bilinear', | |
| align_corners=self.align_corners) | |
| if self.training: | |
| temp_d = x_d.clone() | |
| # stage 5 | |
| x_i = self.i_branch_layers[2](x_i) | |
| x_p = self.p_branch_layers[2](self.relu(x_p)) | |
| x_d = self.d_branch_layers[2](self.relu(x_d)) | |
| x_i = self.spp(x_i) | |
| x_i = F.interpolate( | |
| x_i, | |
| size=[h_out, w_out], | |
| mode='bilinear', | |
| align_corners=self.align_corners) | |
| out = self.dfm(x_p, x_i, x_d) | |
| return (temp_p, out, temp_d) if self.training else out | |