Abdullah Zaki
commited on
Commit
·
387baae
1
Parent(s):
6d7551e
files
Browse files- .env +2 -0
- app.py +124 -0
- requirements.txt +7 -0
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
SUPABASE_URL=https://hgsdcoqgvdjuxvcscqzn.supabase.co
|
2 |
+
SUPABASE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Imhnc2Rjb3FndmRqdXh2Y3NjcXpuIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDkxNTMxNDEsImV4cCI6MjA2NDcyOTE0MX0.pYigfNha5pge2DMj9sMOwQ1RUqwh2Cy_zQws3A5IwRo
|
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from chronos import ChronosPipeline
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
from supabase import create_client, Client
|
8 |
+
import os
|
9 |
+
import plotly.express as px
|
10 |
+
|
11 |
+
# Initialize Supabase client with API key from environment variables
|
12 |
+
SUPABASE_URL = os.getenv("SUPABASE_URL")
|
13 |
+
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
|
14 |
+
if not SUPABASE_URL or not SUPABASE_KEY:
|
15 |
+
raise ValueError("SUPABASE_URL and SUPABASE_KEY must be set as environment variables.")
|
16 |
+
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
17 |
+
|
18 |
+
# Initialize Chronos-T5-Large for forecasting
|
19 |
+
chronos_pipeline = ChronosPipeline.from_pretrained(
|
20 |
+
"amazon/chronos-t5-large",
|
21 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
22 |
+
torch_dtype=torch.bfloat16
|
23 |
+
)
|
24 |
+
|
25 |
+
# Initialize Prophet-Qwen3-4B-SFT for Arabic reports
|
26 |
+
qwen_tokenizer = AutoTokenizer.from_pretrained("radm/prophet-qwen3-4b-sft")
|
27 |
+
qwen_model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
"radm/prophet-qwen3-4b-sft",
|
29 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
30 |
+
torch_dtype=torch.bfloat16
|
31 |
+
)
|
32 |
+
|
33 |
+
def fetch_supabase_data(table_name: str = "sentiment_data") -> pd.DataFrame:
|
34 |
+
"""Fetch time series data from Supabase using the provided API key."""
|
35 |
+
try:
|
36 |
+
response = supabase.table(table_name).select("date, sentiment").order("date", desc=False).execute()
|
37 |
+
if response.data:
|
38 |
+
df = pd.DataFrame(response.data)
|
39 |
+
df['date'] = pd.to_datetime(df['date'])
|
40 |
+
return df
|
41 |
+
else:
|
42 |
+
raise ValueError("No data found in Supabase table.")
|
43 |
+
except Exception as e:
|
44 |
+
raise Exception(f"Error fetching Supabase data: {str(e)}")
|
45 |
+
|
46 |
+
def forecast_and_report(data_source: str, csv_file=None, prediction_length: int = 30, table_name: str = "sentiment_data"):
|
47 |
+
"""Run forecasting with Chronos-T5-Large and generate Arabic report with Qwen3-4B-SFT."""
|
48 |
+
try:
|
49 |
+
# Load data
|
50 |
+
if data_source == "Supabase":
|
51 |
+
df = fetch_supabase_data(table_name)
|
52 |
+
else:
|
53 |
+
if not csv_file:
|
54 |
+
return {"error": "Please upload a CSV file."}, None, None
|
55 |
+
df = pd.read_csv(csv_file)
|
56 |
+
if "sentiment" not in df.columns or "date" not in df.columns:
|
57 |
+
return {"error": "CSV must contain 'date' and 'sentiment' columns."}, None, None
|
58 |
+
df['date'] = pd.to_datetime(df['date'])
|
59 |
+
|
60 |
+
# Prepare time series
|
61 |
+
context = torch.tensor(df["sentiment"].values, dtype=torch.float32)
|
62 |
+
|
63 |
+
# Run forecast
|
64 |
+
forecast = chronos_pipeline.predict(context, prediction_length)
|
65 |
+
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
|
66 |
+
|
67 |
+
# Format forecast results
|
68 |
+
forecast_dates = pd.date_range(start=df["date"].iloc[-1] + pd.Timedelta(days=1), periods=prediction_length, freq="D")
|
69 |
+
forecast_df = pd.DataFrame({
|
70 |
+
"date": forecast_dates,
|
71 |
+
"low": low,
|
72 |
+
"median": median,
|
73 |
+
"high": high
|
74 |
+
})
|
75 |
+
|
76 |
+
# Create forecast plot
|
77 |
+
plot_df = forecast_df.copy()
|
78 |
+
fig = px.line(plot_df, x="date", y=["median", "low", "high"], title="Sentiment Forecast")
|
79 |
+
fig.update_traces(line=dict(color="blue"), selector=dict(name="median"))
|
80 |
+
fig.update_traces(line=dict(color="red", dash="dash"), selector=dict(name="low"))
|
81 |
+
fig.update_traces(line=dict(color="green", dash="dash"), selector=dict(name="high"))
|
82 |
+
|
83 |
+
# Generate Arabic report
|
84 |
+
prompt = (
|
85 |
+
"اكتب تقريراً رسمياً بالعربية يلخص توقعات المشاعر للأيام الثلاثين القادمة بناءً على البيانات التالية:\n"
|
86 |
+
f"- متوسط التوقعات: {median[:5].tolist()} (أول 5 أيام)...\n"
|
87 |
+
f"- الحد الأدنى (10%): {low[:5].tolist()}...\n"
|
88 |
+
f"- الحد الأعلى (90%): {high[:5].tolist()}...\n"
|
89 |
+
"التقرير يجب أن يكون موجزاً (200-300 كلمة)، يشرح الاتجاهات، ويستخدم لغة رسمية."
|
90 |
+
)
|
91 |
+
inputs = qwen_tokenizer(prompt, return_tensors="pt").to(qwen_model.device)
|
92 |
+
outputs = qwen_model.generate(
|
93 |
+
inputs["input_ids"],
|
94 |
+
max_new_tokens=500,
|
95 |
+
do_sample=True,
|
96 |
+
temperature=0.7,
|
97 |
+
top_p=0.9
|
98 |
+
)
|
99 |
+
report = qwen_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
return forecast_df.to_dict(), fig, report
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
return {"error": f"An error occurred: {str(e)}"}, None, None
|
105 |
+
|
106 |
+
# Gradio interface
|
107 |
+
with gr.Blocks() as demo:
|
108 |
+
gr.Markdown("# Sentiment Forecasting and Arabic Reporting")
|
109 |
+
data_source = gr.Radio(["Supabase", "CSV Upload"], label="Data Source", value="Supabase")
|
110 |
+
csv_file = gr.File(label="Upload CSV (if CSV selected)")
|
111 |
+
table_name = gr.Textbox(label="Supabase Table Name", value="sentiment_data")
|
112 |
+
prediction_length = gr.Slider(1, 60, value=30, step=1, label="Prediction Length (days)")
|
113 |
+
submit = gr.Button("Run Forecast and Generate Report")
|
114 |
+
output = gr.JSON(label="Forecast Results")
|
115 |
+
plot = gr.Plot(label="Forecast Plot")
|
116 |
+
report = gr.Textbox(label="Arabic Report", lines=10)
|
117 |
+
|
118 |
+
submit.click(
|
119 |
+
fn=forecast_and_report,
|
120 |
+
inputs=[data_source, csv_file, prediction_length, table_name],
|
121 |
+
outputs=[output, plot, report]
|
122 |
+
)
|
123 |
+
|
124 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.35.0
|
3 |
+
gradio>=4.0.0
|
4 |
+
pandas>=2.0.0
|
5 |
+
numpy>=1.24.0
|
6 |
+
supabase>=2.0.0
|
7 |
+
git+https://github.com/amazon-science/chronos-forecasting.git
|