Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from transformers import AutoTokenizer, AutoModel | |
import gradio as gr | |
class CustomTinyBERTClassifier(nn.Module): | |
def __init__(self, model_name='huawei-noah/TinyBERT_General_4L_312D', extra_feat_dim=4, num_labels=2): | |
super().__init__() | |
self.bert = AutoModel.from_pretrained(model_name) | |
self.dropout = nn.Dropout(0.3) | |
hidden_size = self.bert.config.hidden_size | |
self.classifier = nn.Linear(hidden_size + extra_feat_dim, num_labels) | |
def forward(self, input_ids, attention_mask, additional_features): | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
cls_output = outputs.last_hidden_state[:, 0] | |
combined = torch.cat((cls_output, additional_features), dim=1) | |
combined = self.dropout(combined) | |
logits = self.classifier(combined) | |
return logits | |
model_name = "huawei-noah/TinyBERT_General_4L_312D" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = CustomTinyBERTClassifier(model_name=model_name, extra_feat_dim=4, num_labels=2) | |
model.load_state_dict(torch.load("custom_fake_job_model.pt", map_location=torch.device("cpu"))) | |
model.eval() | |
def predict_job(text, telecommuting, has_logo, has_questions, employment_type): | |
encoded = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
input_ids = encoded["input_ids"] | |
attention_mask = encoded["attention_mask"] | |
additional_features = torch.tensor([[telecommuting, has_logo, has_questions, employment_type]], dtype=torch.float32) | |
with torch.no_grad(): | |
logits = model(input_ids=input_ids, attention_mask=attention_mask, additional_features=additional_features) | |
probs = torch.softmax(logits, dim=1) | |
pred = torch.argmax(probs, dim=1).item() | |
confidence = probs[0][pred].item() | |
label = "π¨ Fake Job" if pred == 1 else "β Legit Job" | |
result = ( | |
f"{label} (Confidence: {confidence:.2f})\n" | |
f"Probabilities - Legit: {probs[0][0]:.3f}, Fake: {probs[0][1]:.3f}\n" | |
f"Raw logits: {logits.squeeze().tolist()}" | |
) | |
return result | |
demo = gr.Interface( | |
fn=predict_job, | |
inputs=[ | |
gr.Textbox(lines=5, label="Job Description"), | |
gr.Slider(0, 1, step=1, label="Telecommuting (0 = No, 1 = Yes)"), | |
gr.Slider(0, 1, step=1, label="Has Company Logo (0 = No, 1 = Yes)"), | |
gr.Slider(0, 1, step=1, label="Has Questions (0 = No, 1 = Yes)"), | |
gr.Slider(0, 5, step=1, label="Employment Type (0β5)") | |
], | |
outputs=gr.Textbox(label="Prediction"), | |
title="Fake Job Detector", | |
description="Detects fake job postings using TinyBERT and additional features" | |
) | |
demo.launch() | |