import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load tokenizer and model model_id = "microsoft/Magma-8B" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, trust_remote_code=True ) # Define a simple text-generation function def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio interface interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs="text", title="Magma-8B Text Generator" ) # Launch the app (use launch instead of mount_gradio_app) interface.launch()