Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
from PIL import Image | |
import gradio as gr | |
# Load the MAGMA model and processor | |
model_id = "microsoft/Magma-8B" | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, trust_remote_code=True) | |
model.to("cuda" if torch.cuda.is_available() else "cpu") | |
def magma_inference(image: Image.Image, prompt: str) -> str: | |
# Prepare conversation | |
convs = [ | |
{"role": "system", "content": "You are an agent that can see, talk, and act."}, | |
{"role": "user", "content": prompt} | |
] | |
# Generate prompt | |
text_prompt = processor.tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=True) | |
# Process inputs | |
inputs = processor(images=[image], texts=text_prompt, return_tensors="pt").to(model.device) | |
# Generate output | |
with torch.inference_mode(): | |
generate_ids = model.generate(**inputs, max_new_tokens=50) | |
generate_ids = generate_ids[:, inputs["input_ids"].shape[-1]:] | |
response = processor.decode(generate_ids[0], skip_special_tokens=True).strip() | |
return response | |
# Gradio interface | |
interface = gr.Interface( | |
fn=magma_inference, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Textbox(label="Prompt") | |
], | |
outputs=gr.Textbox(label="MAGMA Output"), | |
title="MAGMA Image + Text to Text API", | |
description="Upload an image and enter a prompt. Returns MAGMA's textual response." | |
) | |
app = gr.mount_gradio_app(app=interface, path="/") | |