llama32-3b-instruct / Dockerfile
yusufs's picture
nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu22.04
053dce6 verified
raw
history blame
1.63 kB
FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu22.04
RUN apt-get update && apt-get install -y python3 python3-pip git
RUN pip3 install --upgrade pip
# Install vLLM
RUN pip3 install vllm==0.10.0
# Download at build time,
# to ensure during restart we won't have to wait for the download from HF (only wait for docker pull).
# In Docker Spaces, the secrets management is different for security reasons.
# Once you create a secret in the Settings tab,
# you can expose the secret by adding the following line in your Dockerfile:
#
# For example, if SECRET_EXAMPLE is the name of the secret you created in the Settings tab,
# you can read it at build time by mounting it to a file, then reading it with $(cat /run/secrets/SECRET_EXAMPLE).
# https://huggingface.co/docs/hub/en/spaces-sdks-docker#buildtime
#
# AFTER TRIAL AND ERROR WE GOT 16GB (16431849854 bytes) OF LAYERS :(
#
# RUN --mount=type=secret,id=HF_TOKEN,mode=0444,required=true HF_TOKEN=$(cat /run/secrets/HF_TOKEN) python /app/download_model.py
EXPOSE 7860
CMD export VLLM_LOGGING_LEVEL=DEBUG && \
python3 -m vllm.entrypoints.openai.api_server \
--model "meta-llama/Llama-3.2-3B-Instruct" \
--task generate \
--revision "0cb88a4f764b7a12671c53f0838cd831a0843b95" \
--code-revision "0cb88a4f764b7a12671c53f0838cd831a0843b95" \
--tokenizer-revision "0cb88a4f764b7a12671c53f0838cd831a0843b95" \
--seed 42 \
--host 0.0.0.0 \
--port 7860 \
--max-num-batched-tokens 32768 \
--max-model-len 32768 \
--dtype float16 \
--enforce-eager \
--gpu-memory-utilization 0.9 \
--enable-prefix-caching \
--disable-log-requests \
--trust-remote-code