Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from typing import Union, Tuple, Optional, Dict, Any | |
| from diffusers.utils import is_torch_version | |
| from diffusers.models.resnet import ( | |
| Downsample2D, | |
| SpatioTemporalResBlock, | |
| Upsample2D | |
| ) | |
| from diffusers.models.unet_3d_blocks import ( | |
| DownBlockSpatioTemporal, | |
| UpBlockSpatioTemporal, | |
| ) | |
| from cameractrl.models.transformer_temporal import TransformerSpatioTemporalModelPoseCond | |
| def get_down_block( | |
| down_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| add_downsample: bool, | |
| num_attention_heads: int, | |
| cross_attention_dim: Optional[int] = None, | |
| transformer_layers_per_block: int = 1, | |
| **kwargs, | |
| ) -> Union[ | |
| "DownBlockSpatioTemporal", | |
| "CrossAttnDownBlockSpatioTemporalPoseCond", | |
| ]: | |
| if down_block_type == "DownBlockSpatioTemporal": | |
| # added for SDV | |
| return DownBlockSpatioTemporal( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlockSpatioTemporalPoseCond": | |
| # added for SDV | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal") | |
| return CrossAttnDownBlockSpatioTemporalPoseCond( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| add_downsample=add_downsample, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| def get_up_block( | |
| up_block_type: str, | |
| num_layers: int, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| add_upsample: bool, | |
| num_attention_heads: int, | |
| resolution_idx: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| transformer_layers_per_block: int = 1, | |
| **kwargs, | |
| ) -> Union[ | |
| "UpBlockSpatioTemporal", | |
| "CrossAttnUpBlockSpatioTemporalPoseCond", | |
| ]: | |
| if up_block_type == "UpBlockSpatioTemporal": | |
| # added for SDV | |
| return UpBlockSpatioTemporal( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| resolution_idx=resolution_idx, | |
| add_upsample=add_upsample, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlockSpatioTemporalPoseCond": | |
| # added for SDV | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal") | |
| return CrossAttnUpBlockSpatioTemporalPoseCond( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| add_upsample=add_upsample, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| resolution_idx=resolution_idx, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| class CrossAttnDownBlockSpatioTemporalPoseCond(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| add_downsample: bool = True, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| SpatioTemporalResBlock( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=1e-6, | |
| ) | |
| ) | |
| attentions.append( | |
| TransformerSpatioTemporalModelPoseCond( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample2D( | |
| out_channels, | |
| use_conv=True, | |
| out_channels=out_channels, | |
| padding=1, | |
| name="op", | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, # [bs * frame, c, h, w] | |
| temb: Optional[torch.FloatTensor] = None, # [bs * frame, c] | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, # [bs * frame, 1, c] | |
| image_only_indicator: Optional[torch.Tensor] = None, # [bs, frame] | |
| pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
| ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: | |
| output_states = () | |
| blocks = list(zip(self.resnets, self.attentions)) | |
| for resnet, attn in blocks: | |
| if self.training and self.gradient_checkpointing: # TODO | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| image_only_indicator, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) # [bs * frame, c, h, w] | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| pose_feature=pose_feature, | |
| return_dict=False, | |
| )[0] | |
| output_states = output_states + (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| class UNetMidBlockSpatioTemporalPoseCond(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| # support for variable transformer layers per block | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| # there is always at least one resnet | |
| resnets = [ | |
| SpatioTemporalResBlock( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=1e-5, | |
| ) | |
| ] | |
| attentions = [] | |
| for i in range(num_layers): | |
| attentions.append( | |
| TransformerSpatioTemporalModelPoseCond( | |
| num_attention_heads, | |
| in_channels // num_attention_heads, | |
| in_channels=in_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| ) | |
| resnets.append( | |
| SpatioTemporalResBlock( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=1e-5, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
| ) -> torch.FloatTensor: | |
| hidden_states = self.resnets[0]( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if self.training and self.gradient_checkpointing: # TODO | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| image_only_indicator, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| pose_feature=pose_feature, | |
| return_dict=False, | |
| )[0] | |
| hidden_states = resnet( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| return hidden_states | |
| class CrossAttnUpBlockSpatioTemporalPoseCond(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| resolution_idx: Optional[int] = None, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| resnet_eps: float = 1e-6, | |
| num_attention_heads: int = 1, | |
| cross_attention_dim: int = 1280, | |
| add_upsample: bool = True, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * num_layers | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| SpatioTemporalResBlock( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| ) | |
| ) | |
| attentions.append( | |
| TransformerSpatioTemporalModelPoseCond( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block[i], | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| self.resolution_idx = resolution_idx | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| image_only_indicator: Optional[torch.Tensor] = None, | |
| pose_feature: Optional[torch.Tensor] = None # [bs, c, frame, h, w] | |
| ) -> torch.FloatTensor: | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: # TODO | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| image_only_indicator, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| hidden_states = resnet( | |
| hidden_states, | |
| temb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| pose_feature=pose_feature, | |
| return_dict=False, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |