Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,117 +1,350 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import os
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
"""
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# Check if it's a HuggingFace URL
|
| 20 |
-
if checkpoint_path.startswith("hf://"):
|
| 21 |
-
# Parse HF URL: hf://username/repo/path/to/model.pt
|
| 22 |
-
match = re.match(r"hf://([^/]+/[^/]+)/(.+)", checkpoint_path)
|
| 23 |
-
if match:
|
| 24 |
-
repo_id = match.group(1)
|
| 25 |
-
filename = match.group(2)
|
| 26 |
-
|
| 27 |
-
print(f"Loading from HuggingFace: {repo_id}/{filename}")
|
| 28 |
-
|
| 29 |
-
# Download from HuggingFace
|
| 30 |
-
local_path = hf_hub_download(
|
| 31 |
-
repo_id=repo_id,
|
| 32 |
-
filename=filename,
|
| 33 |
-
cache_dir=os.environ.get("HF_HOME", "./models")
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
# Load the checkpoint
|
| 37 |
-
return torch.load(local_path, map_location=device)
|
| 38 |
-
|
| 39 |
-
# Check if it's a HuggingFace repo format (username/repo/file.pt)
|
| 40 |
-
elif "/" in checkpoint_path and not os.path.exists(checkpoint_path):
|
| 41 |
-
parts = checkpoint_path.split("/")
|
| 42 |
-
if len(parts) >= 3:
|
| 43 |
-
repo_id = "/".join(parts[:2])
|
| 44 |
-
filename = "/".join(parts[2:])
|
| 45 |
-
|
| 46 |
-
print(f"Loading from HuggingFace: {repo_id}/{filename}")
|
| 47 |
-
|
| 48 |
-
local_path = hf_hub_download(
|
| 49 |
-
repo_id=repo_id,
|
| 50 |
-
filename=filename,
|
| 51 |
-
cache_dir=os.environ.get("HF_HOME", "./models")
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
return torch.load(local_path, map_location=device)
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
def __init__(
|
| 66 |
-
self,
|
| 67 |
-
student_checkpoint_path="",
|
| 68 |
-
duration_predictor_path="",
|
| 69 |
-
device="cuda",
|
| 70 |
-
model_type="F5TTS_Base",
|
| 71 |
-
tokenizer="pinyin",
|
| 72 |
-
dataset_name="Emilia_ZH_EN",
|
| 73 |
-
cuda_device_id="0"
|
| 74 |
-
):
|
| 75 |
-
# ... (previous initialization code) ...
|
| 76 |
-
|
| 77 |
-
# Initialize components
|
| 78 |
-
self._setup_tokenizer()
|
| 79 |
-
self._setup_models(student_checkpoint_path) # Modified to handle HF URLs
|
| 80 |
-
self._setup_mel_spec()
|
| 81 |
-
self._setup_vocoder()
|
| 82 |
-
self._setup_duration_predictor(duration_predictor_path) # Modified to handle HF URLs
|
| 83 |
-
|
| 84 |
-
def _setup_models(self, student_checkpoint_path):
|
| 85 |
-
"""Initialize teacher and student models with HF support."""
|
| 86 |
-
# ... (model configuration code) ...
|
| 87 |
-
|
| 88 |
-
# Load student checkpoint with HF support
|
| 89 |
-
checkpoint = load_checkpoint_from_hf(student_checkpoint_path, device='cpu')
|
| 90 |
-
self.model.load_state_dict(checkpoint['model_state_dict'], strict=False)
|
| 91 |
-
|
| 92 |
-
# ... (rest of the setup) ...
|
| 93 |
-
|
| 94 |
-
def _setup_duration_predictor(self, checkpoint_path):
|
| 95 |
-
"""Initialize duration predictor with HF support."""
|
| 96 |
-
# ... (model initialization code) ...
|
| 97 |
-
|
| 98 |
-
# Load checkpoint with HF support
|
| 99 |
-
checkpoint = load_checkpoint_from_hf(checkpoint_path, device='cpu')
|
| 100 |
-
self.SLP.load_state_dict(checkpoint['model_state_dict'])
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
if
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
"""Load checkpoint with HF URL support."""
|
| 117 |
-
return load_checkpoint_from_hf(checkpoint_path, self.device)
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tempfile
|
| 6 |
+
import time
|
| 7 |
from pathlib import Path
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# Import the inference module (assuming it's named 'infer.py' based on the notebook)
|
| 12 |
+
from infer import DMOInference
|
| 13 |
+
|
| 14 |
+
# Global model instance
|
| 15 |
+
model = None
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
def download_models():
|
| 19 |
+
"""Download models from HuggingFace Hub."""
|
| 20 |
+
try:
|
| 21 |
+
print("Downloading models from HuggingFace...")
|
| 22 |
+
|
| 23 |
+
# Download student model
|
| 24 |
+
student_path = hf_hub_download(
|
| 25 |
+
repo_id="yl4579/DMOSpeech2",
|
| 26 |
+
filename="model_85000.pt",
|
| 27 |
+
cache_dir="./models"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Download duration predictor
|
| 31 |
+
duration_path = hf_hub_download(
|
| 32 |
+
repo_id="yl4579/DMOSpeech2",
|
| 33 |
+
filename="model_1500.pt",
|
| 34 |
+
cache_dir="./models"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
print(f"Student model: {student_path}")
|
| 38 |
+
print(f"Duration model: {duration_path}")
|
| 39 |
+
|
| 40 |
+
return student_path, duration_path
|
| 41 |
+
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error downloading models: {e}")
|
| 44 |
+
return None, None
|
| 45 |
|
| 46 |
+
def initialize_model():
|
| 47 |
+
"""Initialize the model on startup."""
|
| 48 |
+
global model
|
| 49 |
|
| 50 |
+
try:
|
| 51 |
+
# Download models
|
| 52 |
+
student_path, duration_path = download_models()
|
| 53 |
+
|
| 54 |
+
if not student_path or not duration_path:
|
| 55 |
+
return False, "Failed to download models from HuggingFace"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Initialize model
|
| 58 |
+
model = DMOInference(
|
| 59 |
+
student_checkpoint_path=student_path,
|
| 60 |
+
duration_predictor_path=duration_path,
|
| 61 |
+
device=device,
|
| 62 |
+
model_type="F5TTS_Base"
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
return True, f"Model loaded successfully on {device.upper()}"
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
return False, f"Error initializing model: {str(e)}"
|
| 69 |
|
| 70 |
+
# Initialize model on startup
|
| 71 |
+
model_loaded, status_message = initialize_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
def generate_speech(
|
| 74 |
+
prompt_audio,
|
| 75 |
+
prompt_text,
|
| 76 |
+
target_text,
|
| 77 |
+
mode,
|
| 78 |
+
# Advanced settings
|
| 79 |
+
custom_teacher_steps,
|
| 80 |
+
custom_teacher_stopping_time,
|
| 81 |
+
custom_student_start_step,
|
| 82 |
+
temperature,
|
| 83 |
+
verbose
|
| 84 |
+
):
|
| 85 |
+
"""Generate speech with different configurations."""
|
| 86 |
+
|
| 87 |
+
if not model_loaded or model is None:
|
| 88 |
+
return None, "Model not loaded! Please refresh the page.", "", ""
|
| 89 |
+
|
| 90 |
+
if prompt_audio is None:
|
| 91 |
+
return None, "Please upload a reference audio!", "", ""
|
| 92 |
+
|
| 93 |
+
if not target_text:
|
| 94 |
+
return None, "Please enter text to generate!", "", ""
|
| 95 |
|
| 96 |
+
try:
|
| 97 |
+
start_time = time.time()
|
| 98 |
+
|
| 99 |
+
# Configure parameters based on mode
|
| 100 |
+
if mode == "Student Only (4 steps)":
|
| 101 |
+
teacher_steps = 0
|
| 102 |
+
student_start_step = 0
|
| 103 |
+
teacher_stopping_time = 1.0
|
| 104 |
+
elif mode == "Teacher-Guided (8 steps)":
|
| 105 |
+
# Default configuration from the notebook
|
| 106 |
+
teacher_steps = 16
|
| 107 |
+
teacher_stopping_time = 0.07
|
| 108 |
+
student_start_step = 1
|
| 109 |
+
elif mode == "High Diversity (16 steps)":
|
| 110 |
+
teacher_steps = 24
|
| 111 |
+
teacher_stopping_time = 0.3
|
| 112 |
+
student_start_step = 2
|
| 113 |
+
else: # Custom
|
| 114 |
+
teacher_steps = custom_teacher_steps
|
| 115 |
+
teacher_stopping_time = custom_teacher_stopping_time
|
| 116 |
+
student_start_step = custom_student_start_step
|
| 117 |
+
|
| 118 |
+
# Generate speech
|
| 119 |
+
generated_audio = model.generate(
|
| 120 |
+
gen_text=target_text,
|
| 121 |
+
audio_path=prompt_audio,
|
| 122 |
+
prompt_text=prompt_text if prompt_text else None,
|
| 123 |
+
teacher_steps=teacher_steps,
|
| 124 |
+
teacher_stopping_time=teacher_stopping_time,
|
| 125 |
+
student_start_step=student_start_step,
|
| 126 |
+
temperature=temperature,
|
| 127 |
+
verbose=verbose
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
end_time = time.time()
|
| 131 |
+
|
| 132 |
+
# Calculate metrics
|
| 133 |
+
processing_time = end_time - start_time
|
| 134 |
+
audio_duration = generated_audio.shape[-1] / 24000
|
| 135 |
+
rtf = processing_time / audio_duration
|
| 136 |
+
|
| 137 |
+
# Save audio
|
| 138 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 139 |
+
output_path = tmp_file.name
|
| 140 |
+
|
| 141 |
+
if isinstance(generated_audio, np.ndarray):
|
| 142 |
+
generated_audio = torch.from_numpy(generated_audio)
|
| 143 |
+
|
| 144 |
+
if generated_audio.dim() == 1:
|
| 145 |
+
generated_audio = generated_audio.unsqueeze(0)
|
| 146 |
|
| 147 |
+
torchaudio.save(output_path, generated_audio, 24000)
|
| 148 |
+
|
| 149 |
+
# Format metrics
|
| 150 |
+
metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
|
| 151 |
+
|
| 152 |
+
return output_path, "Success!", metrics, f"Mode: {mode}"
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
return None, f"Error: {str(e)}", "", ""
|
| 156 |
+
|
| 157 |
+
# Create Gradio interface
|
| 158 |
+
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
|
| 159 |
+
gr.Markdown(f"""
|
| 160 |
+
# 🎙️ DMOSpeech 2: Zero-Shot Text-to-Speech
|
| 161 |
+
|
| 162 |
+
Generate natural speech in any voice with just a short reference audio!
|
| 163 |
+
|
| 164 |
+
**Model Status:** {status_message} | **Device:** {device.upper()}
|
| 165 |
+
""")
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column(scale=1):
|
| 169 |
+
# Reference audio input
|
| 170 |
+
prompt_audio = gr.Audio(
|
| 171 |
+
label="📎 Reference Audio",
|
| 172 |
+
type="filepath",
|
| 173 |
+
sources=["upload", "microphone"]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
prompt_text = gr.Textbox(
|
| 177 |
+
label="📝 Reference Text (optional - will auto-transcribe if empty)",
|
| 178 |
+
placeholder="The text spoken in the reference audio...",
|
| 179 |
+
lines=2
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
target_text = gr.Textbox(
|
| 183 |
+
label="✍️ Text to Generate",
|
| 184 |
+
placeholder="Enter the text you want to synthesize...",
|
| 185 |
+
lines=4
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Generation mode
|
| 189 |
+
mode = gr.Radio(
|
| 190 |
+
choices=[
|
| 191 |
+
"Student Only (4 steps)",
|
| 192 |
+
"Teacher-Guided (8 steps)",
|
| 193 |
+
"High Diversity (16 steps)",
|
| 194 |
+
"Custom"
|
| 195 |
+
],
|
| 196 |
+
value="Teacher-Guided (8 steps)",
|
| 197 |
+
label="🚀 Generation Mode",
|
| 198 |
+
info="Choose speed vs quality/diversity tradeoff"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# Advanced settings (collapsible)
|
| 202 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 203 |
+
with gr.Row():
|
| 204 |
+
custom_teacher_steps = gr.Slider(
|
| 205 |
+
minimum=0,
|
| 206 |
+
maximum=32,
|
| 207 |
+
value=16,
|
| 208 |
+
step=1,
|
| 209 |
+
label="Teacher Steps",
|
| 210 |
+
info="More steps = higher quality"
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
custom_teacher_stopping_time = gr.Slider(
|
| 214 |
+
minimum=0.0,
|
| 215 |
+
maximum=1.0,
|
| 216 |
+
value=0.07,
|
| 217 |
+
step=0.01,
|
| 218 |
+
label="Teacher Stopping Time",
|
| 219 |
+
info="When to switch to student"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
custom_student_start_step = gr.Slider(
|
| 223 |
+
minimum=0,
|
| 224 |
+
maximum=4,
|
| 225 |
+
value=1,
|
| 226 |
+
step=1,
|
| 227 |
+
label="Student Start Step",
|
| 228 |
+
info="Which student step to start from"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
temperature = gr.Slider(
|
| 232 |
+
minimum=0.0,
|
| 233 |
+
maximum=2.0,
|
| 234 |
+
value=0.0,
|
| 235 |
+
step=0.1,
|
| 236 |
+
label="Duration Temperature",
|
| 237 |
+
info="0 = deterministic, >0 = more variation in speech rhythm"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
verbose = gr.Checkbox(
|
| 241 |
+
value=False,
|
| 242 |
+
label="Verbose Output",
|
| 243 |
+
info="Show detailed generation steps"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
|
| 247 |
+
|
| 248 |
+
with gr.Column(scale=1):
|
| 249 |
+
# Output
|
| 250 |
+
output_audio = gr.Audio(
|
| 251 |
+
label="🔊 Generated Speech",
|
| 252 |
+
type="filepath",
|
| 253 |
+
autoplay=True
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
status = gr.Textbox(
|
| 257 |
+
label="Status",
|
| 258 |
+
interactive=False
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
metrics = gr.Textbox(
|
| 262 |
+
label="Performance Metrics",
|
| 263 |
+
interactive=False
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
info = gr.Textbox(
|
| 267 |
+
label="Generation Info",
|
| 268 |
+
interactive=False
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Tips
|
| 272 |
+
gr.Markdown("""
|
| 273 |
+
### 💡 Quick Tips:
|
| 274 |
+
|
| 275 |
+
- **Student Only**: Fastest (4 steps), good quality
|
| 276 |
+
- **Teacher-Guided**: Best balance (8 steps), recommended
|
| 277 |
+
- **High Diversity**: More natural prosody (16 steps)
|
| 278 |
+
- **Temperature**: Add randomness to speech rhythm
|
| 279 |
+
|
| 280 |
+
### 📊 Expected RTF (Real-Time Factor):
|
| 281 |
+
- Student Only: ~0.05x (20x faster than real-time)
|
| 282 |
+
- Teacher-Guided: ~0.10x (10x faster)
|
| 283 |
+
- High Diversity: ~0.20x (5x faster)
|
| 284 |
+
""")
|
| 285 |
+
|
| 286 |
+
# Examples section
|
| 287 |
+
gr.Markdown("### 🎯 Examples")
|
| 288 |
+
|
| 289 |
+
examples = [
|
| 290 |
+
[
|
| 291 |
+
None, # Will be replaced with actual audio path
|
| 292 |
+
"Some call me nature, others call me mother nature.",
|
| 293 |
+
"I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
|
| 294 |
+
"Teacher-Guided (8 steps)",
|
| 295 |
+
16, 0.07, 1, 0.0, False
|
| 296 |
+
],
|
| 297 |
+
[
|
| 298 |
+
None, # Will be replaced with actual audio path
|
| 299 |
+
"对,这就是我,万人敬仰的太乙真人。",
|
| 300 |
+
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
|
| 301 |
+
"Teacher-Guided (8 steps)",
|
| 302 |
+
16, 0.07, 1, 0.0, False
|
| 303 |
+
],
|
| 304 |
+
[
|
| 305 |
+
None,
|
| 306 |
+
"对,这就是我,万人敬仰的太乙真人。",
|
| 307 |
+
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上��肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
|
| 308 |
+
"High Diversity (16 steps)",
|
| 309 |
+
24, 0.3, 2, 0.8, False
|
| 310 |
+
]
|
| 311 |
+
]
|
| 312 |
+
|
| 313 |
+
# Note about example audio files
|
| 314 |
+
gr.Markdown("""
|
| 315 |
+
*Note: Example audio files should be uploaded to the Space. The examples above show the text configurations used in the original notebook.*
|
| 316 |
+
""")
|
| 317 |
+
|
| 318 |
+
# Event handler
|
| 319 |
+
generate_btn.click(
|
| 320 |
+
generate_speech,
|
| 321 |
+
inputs=[
|
| 322 |
+
prompt_audio,
|
| 323 |
+
prompt_text,
|
| 324 |
+
target_text,
|
| 325 |
+
mode,
|
| 326 |
+
custom_teacher_steps,
|
| 327 |
+
custom_teacher_stopping_time,
|
| 328 |
+
custom_student_start_step,
|
| 329 |
+
temperature,
|
| 330 |
+
verbose
|
| 331 |
+
],
|
| 332 |
+
outputs=[output_audio, status, metrics, info]
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
# Update visibility of custom settings based on mode
|
| 336 |
+
def update_custom_visibility(mode):
|
| 337 |
+
return gr.update(visible=(mode == "Custom"))
|
| 338 |
+
|
| 339 |
+
mode.change(
|
| 340 |
+
lambda x: [gr.update(interactive=(x == "Custom"))] * 3,
|
| 341 |
+
inputs=[mode],
|
| 342 |
+
outputs=[custom_teacher_steps, custom_teacher_stopping_time, custom_student_start_step]
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Launch the app
|
| 346 |
+
if __name__ == "__main__":
|
| 347 |
+
if not model_loaded:
|
| 348 |
+
print(f"Warning: Model failed to load - {status_message}")
|
| 349 |
|
| 350 |
+
demo.launch()
|
|
|
|
|
|