Spaces:
Runtime error
Runtime error
| # part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchaudio.transforms as trans | |
| from ctcmodel import ConformerCTC | |
| # from ctcmodel_nopool import ConformerCTC as ConformerCTCNoPool | |
| from pathlib import Path | |
| ''' Res2Conv1d + BatchNorm1d + ReLU | |
| ''' | |
| class Res2Conv1dReluBn(nn.Module): | |
| ''' | |
| in_channels == out_channels == channels | |
| ''' | |
| def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): | |
| super().__init__() | |
| assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
| self.scale = scale | |
| self.width = channels // scale | |
| self.nums = scale if scale == 1 else scale - 1 | |
| self.convs = [] | |
| self.bns = [] | |
| for i in range(self.nums): | |
| self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) | |
| self.bns.append(nn.BatchNorm1d(self.width)) | |
| self.convs = nn.ModuleList(self.convs) | |
| self.bns = nn.ModuleList(self.bns) | |
| def forward(self, x): | |
| out = [] | |
| spx = torch.split(x, self.width, 1) | |
| for i in range(self.nums): | |
| if i == 0: | |
| sp = spx[i] | |
| else: | |
| sp = sp + spx[i] | |
| # Order: conv -> relu -> bn | |
| sp = self.convs[i](sp) | |
| sp = self.bns[i](F.relu(sp)) | |
| out.append(sp) | |
| if self.scale != 1: | |
| out.append(spx[self.nums]) | |
| out = torch.cat(out, dim=1) | |
| return out | |
| ''' Conv1d + BatchNorm1d + ReLU | |
| ''' | |
| class Conv1dReluBn(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): | |
| super().__init__() | |
| self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
| self.bn = nn.BatchNorm1d(out_channels) | |
| def forward(self, x): | |
| return self.bn(F.relu(self.conv(x))) | |
| ''' The SE connection of 1D case. | |
| ''' | |
| class SE_Connect(nn.Module): | |
| def __init__(self, channels, se_bottleneck_dim=128): | |
| super().__init__() | |
| self.linear1 = nn.Linear(channels, se_bottleneck_dim) | |
| self.linear2 = nn.Linear(se_bottleneck_dim, channels) | |
| def forward(self, x): | |
| out = x.mean(dim=2) | |
| out = F.relu(self.linear1(out)) | |
| out = torch.sigmoid(self.linear2(out)) | |
| out = x * out.unsqueeze(2) | |
| return out | |
| ''' SE-Res2Block of the ECAPA-TDNN architecture. | |
| ''' | |
| class SE_Res2Block(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): | |
| super().__init__() | |
| self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) | |
| self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) | |
| self.shortcut = None | |
| if in_channels != out_channels: | |
| self.shortcut = nn.Conv1d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=1, | |
| ) | |
| def forward(self, x): | |
| residual = x | |
| if self.shortcut: | |
| residual = self.shortcut(x) | |
| x = self.Conv1dReluBn1(x) | |
| x = self.Res2Conv1dReluBn(x) | |
| x = self.Conv1dReluBn2(x) | |
| x = self.SE_Connect(x) | |
| return x + residual | |
| ''' Attentive weighted mean and standard deviation pooling. | |
| ''' | |
| class AttentiveStatsPool(nn.Module): | |
| def __init__(self, in_dim, attention_channels=128, global_context_att=False): | |
| super().__init__() | |
| self.global_context_att = global_context_att | |
| # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. | |
| if global_context_att: | |
| self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper | |
| else: | |
| self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper | |
| self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper | |
| def forward(self, x): | |
| if self.global_context_att: | |
| context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) | |
| context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) | |
| x_in = torch.cat((x, context_mean, context_std), dim=1) | |
| else: | |
| x_in = x | |
| # DON'T use ReLU here! In experiments, I find ReLU hard to converge. | |
| alpha = torch.tanh(self.linear1(x_in)) | |
| # alpha = F.relu(self.linear1(x_in)) | |
| alpha = torch.softmax(self.linear2(alpha), dim=2) | |
| mean = torch.sum(alpha * x, dim=2) | |
| residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2 | |
| std = torch.sqrt(residuals.clamp(min=1e-9)) | |
| return torch.cat([mean, std], dim=1) | |
| class ECAPA_TDNN(nn.Module): | |
| def __init__(self, channels=512, emb_dim=512, | |
| global_context_att=False, use_fp16=True, | |
| ctc_cls=ConformerCTC, | |
| ctc_path='/data4/F5TTS/ckpts/F5TTS_norm_ASR_vocos_pinyin_Emilia_ZH_EN/model_last.pt', | |
| ctc_args={'vocab_size': 2545, 'mel_dim': 100, 'num_heads': 8, 'd_hid': 512, 'nlayers': 6}, | |
| ctc_no_grad=False | |
| ): | |
| super().__init__() | |
| if ctc_path != None: | |
| ctc_path = Path(ctc_path) | |
| model = ctc_cls(**ctc_args) | |
| state_dict = torch.load(ctc_path, map_location='cpu') | |
| model.load_state_dict(state_dict['model_state_dict']) | |
| print(f"Initialized pretrained ConformerCTC backbone from {ctc_path}.") | |
| else: | |
| raise ValueError(ctc_path) | |
| self.ctc_model = model | |
| self.ctc_model.out.requires_grad_(False) | |
| if ctc_cls == ConformerCTC: | |
| self.feat_num = ctc_args['nlayers'] + 2 + 1 | |
| # elif ctc_cls == ConformerCTCNoPool: | |
| # self.feat_num = ctc_args['nlayers'] + 1 | |
| else: | |
| raise ValueError(ctc_cls) | |
| feat_dim = ctc_args['d_hid'] | |
| self.emb_dim = emb_dim | |
| self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) | |
| self.instance_norm = nn.InstanceNorm1d(feat_dim) | |
| # self.channels = [channels] * 4 + [channels * 3] | |
| self.channels = [channels] * 4 + [1536] | |
| self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) | |
| self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128) | |
| self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128) | |
| self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128) | |
| # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) | |
| cat_channels = channels * 3 | |
| self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) | |
| self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att) | |
| self.bn = nn.BatchNorm1d(self.channels[-1] * 2) | |
| self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) | |
| if ctc_no_grad: | |
| for param in self.ctc_model.parameters(): | |
| param.requires_grad = False | |
| self.ctc_model = self.ctc_model.eval() | |
| else: | |
| self.ctc_model = self.ctc_model.train() | |
| self.ctc_no_grad = ctc_no_grad | |
| print('ctc_no_grad: ', self.ctc_no_grad) | |
| def forward(self, latent, input_lengths, return_asr=False): | |
| if self.ctc_no_grad: | |
| with torch.no_grad(): | |
| asr, h = self.ctc_model(latent, input_lengths) | |
| else: | |
| asr, h = self.ctc_model(latent, input_lengths) | |
| x = torch.stack(h, dim=0) | |
| norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
| x = (norm_weights * x).sum(dim=0) | |
| x = x + 1e-6 | |
| # x = torch.transpose(x, 1, 2) + 1e-6 | |
| x = self.instance_norm(x) | |
| # x = torch.transpose(x, 1, 2) | |
| out1 = self.layer1(x) | |
| out2 = self.layer2(out1) | |
| out3 = self.layer3(out2) | |
| out4 = self.layer4(out3) | |
| out = torch.cat([out2, out3, out4], dim=1) | |
| out = F.relu(self.conv(out)) | |
| out = self.bn(self.pooling(out)) | |
| out = self.linear(out) | |
| if return_asr: | |
| return out, asr | |
| return out | |
| if __name__ == "__main__": | |
| from diffspeech.ldm.model import DiT | |
| from diffspeech.data.collate import get_mask_from_lengths | |
| from diffspeech.tools.text.vocab import IPA | |
| bsz = 3 | |
| # Sample ipa | |
| ipa_lens = torch.randint(10, 50, (bsz,)).cuda() | |
| ipa_mask = get_mask_from_lengths(ipa_lens).cuda() | |
| ipa = torch.randint(0, len(IPA.vocab), (bsz, ipa_mask.size(-1))).cuda() | |
| # Sample latent | |
| latent_lens = torch.randint(50, 250, (bsz,)).cuda() | |
| latent_mask = get_mask_from_lengths(latent_lens).cuda() | |
| latent = torch.randn(bsz, latent_mask.size(-1), 64).cuda() | |
| # Sample prompt | |
| prompt_mask = get_mask_from_lengths( | |
| (latent_lens * 0.25).long(), max_len=latent_mask.size(-1) | |
| ).cuda() | |
| prompt_latent = latent * prompt_mask.unsqueeze(-1) | |
| model = ECAPA_TDNN(emb_dim=512).cuda() | |
| emb = model(latent, latent_mask.sum(axis=-1)) | |
| print(emb.shape) |