import gradio as gr import numpy as np import random import spaces import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from diffusers.utils import load_image device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "timbrooks/instruct-pix2pix" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( model_repo_id, torch_dtype=torch_dtype, safety_checker=None ) pipe = pipe.to(device) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer( prompt, input_image, negative_prompt, seed, randomize_seed, image_guidance_scale, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if input_image is None: return None, seed if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Process the image if input_image is not None: width, height = input_image.size # Ensure width and height are valid for the model if width > MAX_IMAGE_SIZE: width = MAX_IMAGE_SIZE if height > MAX_IMAGE_SIZE: height = MAX_IMAGE_SIZE image = pipe( prompt=prompt, image=input_image, negative_prompt=negative_prompt, guidance_scale=guidance_scale, image_guidance_scale=image_guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] return image, seed examples = [ ["Turn the sky into a sunset", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"], ["Turn him into a cyborg", "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"], ["Make it look like winter", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"], ] css = """ #col-container { margin: 0 auto; max-width: 840px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # InstructPix2Pix - Image Editing") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image( label="Input Image", type="pil", height=400 ) with gr.Column(scale=1): result = gr.Image(label="Result", height=400) prompt = gr.Text( label="Instruction", placeholder="Enter your instruction (e.g., 'turn the sky into a sunset')", ) run_button = gr.Button("Run", variant="primary") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): image_guidance_scale = gr.Slider( label="Image guidance scale", minimum=0.0, maximum=5.0, step=0.1, value=1.0, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=1.0, maximum=20.0, step=0.1, value=7.5, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=20, ) gr.Examples( examples=examples, inputs=[prompt, input_image], outputs=[result, seed], fn=infer, cache_examples=True, ) gr.on( triggers=[run_button.click], fn=infer, inputs=[ prompt, input_image, negative_prompt, seed, randomize_seed, image_guidance_scale, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()