File size: 4,734 Bytes
693fb49
 
 
 
f0c0f38
693fb49
eaa2696
 
693fb49
 
eaa2696
693fb49
 
 
 
 
 
eaa2696
f0c0f38
 
eaa2696
f0c0f38
693fb49
eaa2696
693fb49
 
 
 
f0c0f38
693fb49
 
f0c0f38
693fb49
 
 
eaa2696
693fb49
 
 
 
f0c0f38
 
 
693fb49
 
 
 
f0c0f38
 
 
 
 
 
 
 
 
 
693fb49
 
 
f0c0f38
693fb49
 
eaa2696
693fb49
 
 
 
 
 
 
 
eaa2696
 
 
693fb49
 
 
 
 
f0c0f38
693fb49
 
 
 
 
eaa2696
693fb49
 
f0c0f38
 
 
 
 
 
 
 
693fb49
f0c0f38
eaa2696
 
f0c0f38
 
 
693fb49
 
 
 
 
 
f0c0f38
 
eaa2696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693fb49
 
 
 
 
 
 
 
 
 
 
eaa2696
 
 
 
 
 
 
693fb49
f0c0f38
 
 
 
 
 
 
 
693fb49
f0c0f38
693fb49
 
 
f0c0f38
693fb49
 
 
eaa2696
693fb49
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import numpy as np
import random

import spaces
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "timbrooks/instruct-pix2pix"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
    model_repo_id, 
    torch_dtype=torch_dtype, 
    safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(
    prompt,
    input_image,
    negative_prompt,
    seed,
    randomize_seed,
    image_guidance_scale,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if input_image is None:
        return None, seed
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)
    
    # Process the image
    if input_image is not None:
        width, height = input_image.size
        
        # Ensure width and height are valid for the model
        if width > MAX_IMAGE_SIZE:
            width = MAX_IMAGE_SIZE
        if height > MAX_IMAGE_SIZE:
            height = MAX_IMAGE_SIZE

    image = pipe(
        prompt=prompt,
        image=input_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        image_guidance_scale=image_guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    ["Turn the sky into a sunset", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
    ["Turn him into a cyborg", "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"],
    ["Make it look like winter", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # InstructPix2Pix - Image Editing")

        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(
                    label="Input Image",
                    type="pil",
                    height=400
                )
            with gr.Column(scale=1):
                result = gr.Image(label="Result", height=400)

        prompt = gr.Text(
            label="Instruction",
            placeholder="Enter your instruction (e.g., 'turn the sky into a sunset')",
        )
        
        run_button = gr.Button("Run", variant="primary")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            
            with gr.Row():
                image_guidance_scale = gr.Slider(
                    label="Image guidance scale",
                    minimum=0.0,
                    maximum=5.0,
                    step=0.1,
                    value=1.0,
                )

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=20.0,
                    step=0.1,
                    value=7.5,
                )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=20,
            )

        gr.Examples(
            examples=examples, 
            inputs=[prompt, input_image],
            outputs=[result, seed],
            fn=infer,
            cache_examples=True,
        )
    
    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            input_image,
            negative_prompt,
            seed,
            randomize_seed,
            image_guidance_scale,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()