Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,734 Bytes
693fb49 f0c0f38 693fb49 eaa2696 693fb49 eaa2696 693fb49 eaa2696 f0c0f38 eaa2696 f0c0f38 693fb49 eaa2696 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 eaa2696 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 eaa2696 693fb49 eaa2696 693fb49 f0c0f38 693fb49 eaa2696 693fb49 f0c0f38 693fb49 f0c0f38 eaa2696 f0c0f38 693fb49 f0c0f38 eaa2696 693fb49 eaa2696 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 eaa2696 693fb49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "timbrooks/instruct-pix2pix"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
image_guidance_scale,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
image = pipe(
prompt=prompt,
image=input_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image, seed
examples = [
["Turn the sky into a sunset", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
["Turn him into a cyborg", "https://raw.githubusercontent.com/timothybrooks/instruct-pix2pix/main/imgs/example.jpg"],
["Make it look like winter", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # InstructPix2Pix - Image Editing")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
result = gr.Image(label="Result", height=400)
prompt = gr.Text(
label="Instruction",
placeholder="Enter your instruction (e.g., 'turn the sky into a sunset')",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
image_guidance_scale = gr.Slider(
label="Image guidance scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=1.0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
gr.Examples(
examples=examples,
inputs=[prompt, input_image],
outputs=[result, seed],
fn=infer,
cache_examples=True,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
image_guidance_scale,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|