File size: 4,952 Bytes
1af45d7
 
 
 
 
08b976c
 
1af45d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b976c
 
 
 
 
1af45d7
08b976c
1af45d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# evaluator.py

import numpy as np
from collections import defaultdict
from datasets import load_dataset
from transformers import pipeline
import os

from sacrebleu.metrics import BLEU, CHRF
from rouge_score import rouge_scorer
import Levenshtein

from transformers.models.whisper.english_normalizer import BasicTextNormalizer


def calculate_metrics(reference: str, prediction: str) -> dict:
    """
    Compute a suite of translation / generation metrics:
      - BLEU
      - chrF
      - CER (character error rate)
      - WER (word error rate)
      - length ratio
      - ROUGE-1 & ROUGE-L
      - a combined quality_score
    """
    # BLEU
    bleu = BLEU(effective_order=True)
    bleu_score = bleu.sentence_score(prediction, [reference]).score

    # chrF
    chrf = CHRF()
    chrf_score = chrf.sentence_score(prediction, [reference]).score / 100.0

    # Character error rate
    cer = Levenshtein.distance(reference, prediction) / max(len(reference), 1)

    # Word error rate
    ref_words = reference.split()
    pred_words = prediction.split()
    wer = Levenshtein.distance(ref_words, pred_words) / max(len(ref_words), 1)

    # Length ratio
    len_ratio = len(prediction) / max(len(reference), 1)

    # ROUGE
    rouge_scores = {}
    try:
        scorer = rouge_scorer.RougeScorer(["rouge1", "rougeL"], use_stemmer=True)
        rouge_scores = scorer.score(reference, prediction)
        rouge_1 = rouge_scores["rouge1"].fmeasure
        rouge_L = rouge_scores["rougeL"].fmeasure
    except Exception:
        rouge_1 = rouge_L = 0.0

    # Combined quality
    try:
        quality_score = (
            (bleu_score / 100)
            + chrf_score
            + (1 - cer)
            + (1 - wer)
            + rouge_1
            + rouge_L
        ) / 6
    except Exception:
        quality_score = (
            (bleu_score / 100) + chrf_score + (1 - cer) + (1 - wer)
        ) / 4

    return {
        "bleu": bleu_score,
        "chrf": chrf_score,
        "cer": cer,
        "wer": wer,
        "len_ratio": len_ratio,
        "rouge1": rouge_1,
        "rougeL": rouge_L,
        "quality_score": quality_score,
    }


def evaluate_model(
    model_name: str,
    dataset_name: str,
    split: str = "test",
    text_field: str = "source",
    target_field: str = "target",
    task: str = "translation",  # or "automatic-speech-recognition", etc.
    device: int = 0,
) -> dict:
    """
    Load your dataset, run inference via a 🤗 pipeline, and compute metrics
    grouped by language‐pair (if present) plus overall averages.

    Returns a dict of shape:
      {
        "<src>_to_<tgt>": {<metric1>: val, ...},
        ...,
        "averages": {<metric1>: val, ...}
      }
    """
    # Get Hugging Face token from environment variable
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise ValueError("Hugging Face token (HF_TOKEN) is not set. Please set it as an environment variable.")

    # 1) load test split
    ds = load_dataset(dataset_name, split=split, use_auth_token=hf_token)

    # 2) build pipeline
    nlp = pipeline(task, model=model_name, device=device)

    # 3) run inference
    normalizer = BasicTextNormalizer()
    translations = []
    for ex in tqdm(ds, desc=f"Eval {model_name}"):
        src = ex[text_field]
        tgt = ex[target_field]
        pred = nlp(src)[0].get("translation_text", nlp(src)[0].get("text", ""))
        translations.append({
            "source": src,
            "target": tgt,
            "prediction": pred,
            # Optional language metadata:
            "source.language": ex.get("source.language", ""),
            "target.language": ex.get("target.language", "")
        })

    # 4) group by language‐pair
    subsets = defaultdict(list)
    for ex in translations:
        key = (
            f"{ex['source.language']}_to_{ex['target.language']}"
            if ex["source.language"] and ex["target.language"]
            else "default"
        )
        subsets[key].append(ex)

    # 5) compute metrics per subset
    results = {}
    for subset, examples in subsets.items():
        # collect metrics lists
        agg = defaultdict(list)
        for ex in examples:
            ref = normalizer(ex["target"])
            pred = normalizer(ex["prediction"])
            m = calculate_metrics(ref, pred)
            for k, v in m.items():
                agg[k].append(v)
        # take mean
        results[subset] = {k: float(np.mean(vs)) for k, vs in agg.items()}

    # 6) overall averages
    all_metrics = list(results.values())
    avg = {}
    for k in all_metrics[0].keys():
        avg[k] = float(np.mean([m[k] for m in all_metrics]))
    results["averages"] = avg

    return results


if __name__ == "__main__":
    # simple test
    import json
    out = evaluate_model(
        model_name="facebook/wmt19-en-de",
        dataset_name="wmt19",
        split="test",
    )
    print(json.dumps(out, indent=2))