Spaces:
Sleeping
Sleeping
File size: 2,599 Bytes
3ec911c c428c79 5888c6a a47415e c428c79 a47415e c428c79 5888c6a 7aeb013 5888c6a 7aeb013 5888c6a c428c79 5888c6a c428c79 5888c6a c428c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import os
import torch
import numpy as np
from torch import nn
from transformers import XLNetModel, XLNetTokenizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from huggingface_hub import hf_hub_download
# Set Hugging Face cache directory
os.environ["HF_HOME"] = "/tmp/huggingface"
# Download model weights from Hugging Face Hub
MODEL_PATH = hf_hub_download(
repo_id="yeswanthvarma/xlnet-evaluator-model",
filename="xlnet_answer_assessment_model.pt"
)
# Define your custom model
class XLNetAnswerAssessmentModel(nn.Module):
def __init__(self):
super().__init__()
self.xlnet = XLNetModel.from_pretrained("xlnet-base-cased")
hidden = 768
self.fc1 = nn.Linear(hidden, 256)
self.fc2 = nn.Linear(256, 64)
self.output = nn.Linear(64, 1) # ← Change from `self.out` to `self.output`
def forward(self, input_ids, attention_mask=None):
pooled = self.xlnet(input_ids, attention_mask).last_hidden_state.mean(1)
x = torch.relu(self.fc1(pooled))
x = torch.relu(self.fc2(x))
return torch.sigmoid(self.output(x)) # ← And change here too
# Initialize model and tokenizer
xlnet_available = False
try:
tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased")
model = XLNetAnswerAssessmentModel()
model.load_state_dict(torch.load(MODEL_PATH, map_location="cpu"))
model.eval()
xlnet_available = True
print("✅ Custom XLNet model loaded.")
except Exception as e:
print("⚠️ Could not load XLNet model → fallback to TF‑IDF\n", e)
# -------------------------------
# Scoring logic
# -------------------------------
def get_model_prediction(q, s, r):
if not xlnet_available:
raise ValueError("XLNet unavailable")
combined = f"{q} [SEP] {s} [SEP] {r}"
inputs = tokenizer(combined, return_tensors="pt", truncation=True, max_length=512, padding=True)
with torch.no_grad():
score = float(model(**inputs).squeeze()) * 100
return round(score)
def tfidf_similarity(t1, t2):
vec = TfidfVectorizer()
mat = vec.fit_transform([t1, t2])
return round(cosine_similarity(mat[0], mat[1])[0][0] * 100)
def fallback_similarity(t1, t2):
w1, w2 = set(t1.lower().split()), set(t2.lower().split())
return round(len(w1 & w2) / len(w1 | w2) * 100) if w1 and w2 else 0
def get_similarity_score(q, s, r):
try:
return get_model_prediction(q, s, r) if xlnet_available else tfidf_similarity(s, r)
except Exception:
return fallback_similarity(s, r)
|