import os import random import gradio as gr import torch from diffusers import DiffusionPipeline from transformers import CLIPTextModel, CLIPTokenizer # Configuration - Using Flux Model MODEL_ID = "CompVis/Flux-Pro" MODEL_CACHE = "model_cache" os.makedirs(MODEL_CACHE, exist_ok=True) def get_pipeline(): # Load Flux model components text_encoder = CLIPTextModel.from_pretrained( MODEL_ID, subfolder="text_encoder", cache_dir=MODEL_CACHE ) tokenizer = CLIPTokenizer.from_pretrained( MODEL_ID, subfolder="tokenizer", cache_dir=MODEL_CACHE ) # Create pipeline pipe = DiffusionPipeline.from_pretrained( MODEL_ID, text_encoder=text_encoder, tokenizer=tokenizer, cache_dir=MODEL_CACHE, torch_dtype=torch.float32, safety_checker=None ) # CPU optimizations pipe = pipe.to("cpu") pipe.enable_attention_slicing() return pipe # Load model pipeline = get_pipeline() def generate_image( prompt: str, negative_prompt: str = "", width: int = 768, height: int = 768, seed: int = -1, guidance_scale: float = 7.5, num_inference_steps: int = 25 ): if seed == -1: seed = random.randint(0, 2147483647) generator = torch.Generator(device="cpu").manual_seed(seed) with torch.no_grad(): image = pipeline( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator ).images[0] return image, seed with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🌀 FLUX-Pro Image Generator") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", lines=3) negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality") generate_btn = gr.Button("Generate", variant="primary") with gr.Accordion("Advanced", open=False): width = gr.Slider(512, 1024, value=768, step=64, label="Width") height = gr.Slider(512, 1024, value=768, step=64, label="Height") guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance") steps = gr.Slider(15, 50, value=25, step=1, label="Steps") seed = gr.Number(label="Seed", value=-1) with gr.Column(): output_image = gr.Image(label="Result", type="pil") used_seed = gr.Textbox(label="Used Seed") generate_btn.click( generate_image, inputs=[prompt, negative_prompt, width, height, seed, guidance, steps], outputs=[output_image, used_seed] ) if __name__ == "__main__": demo.launch()