Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,24 +2,16 @@ import os
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
# Configuration - Using Flux Model
|
9 |
MODEL_ID = "CompVis/Flux-Pro"
|
10 |
-
LORA_ID = "flux/lora-weights"
|
11 |
MODEL_CACHE = "model_cache"
|
12 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
13 |
|
14 |
def get_pipeline():
|
15 |
-
# Load Flux components
|
16 |
-
unet = UNet2DConditionModel.from_pretrained(
|
17 |
-
MODEL_ID,
|
18 |
-
subfolder="unet",
|
19 |
-
cache_dir=MODEL_CACHE,
|
20 |
-
torch_dtype=torch.float32
|
21 |
-
)
|
22 |
-
|
23 |
text_encoder = CLIPTextModel.from_pretrained(
|
24 |
MODEL_ID,
|
25 |
subfolder="text_encoder",
|
@@ -35,7 +27,6 @@ def get_pipeline():
|
|
35 |
# Create pipeline
|
36 |
pipe = DiffusionPipeline.from_pretrained(
|
37 |
MODEL_ID,
|
38 |
-
unet=unet,
|
39 |
text_encoder=text_encoder,
|
40 |
tokenizer=tokenizer,
|
41 |
cache_dir=MODEL_CACHE,
|
@@ -43,14 +34,6 @@ def get_pipeline():
|
|
43 |
safety_checker=None
|
44 |
)
|
45 |
|
46 |
-
# Load LoRA weights
|
47 |
-
lora_path = hf_hub_download(
|
48 |
-
LORA_ID,
|
49 |
-
"flux_lora.safetensors",
|
50 |
-
cache_dir=MODEL_CACHE
|
51 |
-
)
|
52 |
-
pipe.unet.load_attn_procs(lora_path)
|
53 |
-
|
54 |
# CPU optimizations
|
55 |
pipe = pipe.to("cpu")
|
56 |
pipe.enable_attention_slicing()
|
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
# Configuration - Using Flux Model
|
9 |
MODEL_ID = "CompVis/Flux-Pro"
|
|
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
13 |
def get_pipeline():
|
14 |
+
# Load Flux model components
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
text_encoder = CLIPTextModel.from_pretrained(
|
16 |
MODEL_ID,
|
17 |
subfolder="text_encoder",
|
|
|
27 |
# Create pipeline
|
28 |
pipe = DiffusionPipeline.from_pretrained(
|
29 |
MODEL_ID,
|
|
|
30 |
text_encoder=text_encoder,
|
31 |
tokenizer=tokenizer,
|
32 |
cache_dir=MODEL_CACHE,
|
|
|
34 |
safety_checker=None
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# CPU optimizations
|
38 |
pipe = pipe.to("cpu")
|
39 |
pipe.enable_attention_slicing()
|