Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,52 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
-
import gradio as gr
|
4 |
import torch
|
|
|
5 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
BASE_MODEL = "hakurei/waifu-diffusion"
|
9 |
MODEL_CACHE = "model_cache"
|
10 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
11 |
|
12 |
def get_pipeline():
|
13 |
-
# Load the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipe = StableDiffusionPipeline.from_pretrained(
|
15 |
BASE_MODEL,
|
16 |
torch_dtype=torch.float32,
|
17 |
cache_dir=MODEL_CACHE,
|
18 |
-
safety_checker=
|
|
|
19 |
use_safetensors=True
|
20 |
)
|
|
|
21 |
# Move to CPU and enable memory optimizations
|
22 |
pipe = pipe.to("cpu")
|
23 |
pipe.enable_attention_slicing()
|
24 |
-
pipe.enable_model_cpu_offload()
|
|
|
25 |
return pipe
|
26 |
|
27 |
-
# Load
|
28 |
pipeline = get_pipeline()
|
29 |
|
30 |
-
def generate_image(
|
31 |
-
prompt: str,
|
32 |
-
negative_prompt: str = "",
|
33 |
-
width: int = 768,
|
34 |
-
height: int = 768,
|
35 |
-
seed: int = -1,
|
36 |
-
guidance_scale: float = 7.5,
|
37 |
-
num_inference_steps: int = 25
|
38 |
-
):
|
39 |
-
# Generate a random seed if none provided
|
40 |
if seed == -1:
|
41 |
-
seed = random.randint(0, 2**31-1)
|
42 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
43 |
-
|
44 |
with torch.no_grad():
|
45 |
-
|
46 |
prompt=f"anime style, {prompt}",
|
47 |
negative_prompt=negative_prompt,
|
48 |
width=width,
|
@@ -50,26 +54,30 @@ def generate_image(
|
|
50 |
guidance_scale=guidance_scale,
|
51 |
num_inference_steps=num_inference_steps,
|
52 |
generator=generator
|
53 |
-
)
|
|
|
54 |
return image, seed
|
55 |
|
56 |
-
# Gradio
|
57 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
58 |
-
gr.Markdown("# π Anime Image Generator (
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
-
prompt = gr.Textbox(label="Prompt", lines=3
|
62 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, lowres,
|
63 |
generate_btn = gr.Button("Generate", variant="primary")
|
|
|
64 |
with gr.Accordion("Advanced", open=False):
|
65 |
width = gr.Slider(512, 1024, value=768, step=64, label="Width")
|
66 |
height = gr.Slider(512, 1024, value=768, step=64, label="Height")
|
67 |
guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance")
|
68 |
steps = gr.Slider(15, 50, value=25, step=1, label="Steps")
|
69 |
seed = gr.Number(label="Seed", value=-1)
|
|
|
70 |
with gr.Column():
|
71 |
output_image = gr.Image(label="Result", type="pil")
|
72 |
used_seed = gr.Textbox(label="Used Seed")
|
|
|
73 |
generate_btn.click(
|
74 |
generate_image,
|
75 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
@@ -77,4 +85,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
77 |
)
|
78 |
|
79 |
if __name__ == "__main__":
|
80 |
-
demo.launch(
|
|
|
1 |
import os
|
2 |
import random
|
|
|
3 |
import torch
|
4 |
+
import gradio as gr
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
7 |
+
from transformers import CLIPFeatureExtractor
|
8 |
|
9 |
+
# Configuration
|
10 |
BASE_MODEL = "hakurei/waifu-diffusion"
|
11 |
MODEL_CACHE = "model_cache"
|
12 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
13 |
|
14 |
def get_pipeline():
|
15 |
+
# Load the safety checker
|
16 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
17 |
+
"CompVis/stable-diffusion-safety-checker"
|
18 |
+
)
|
19 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
20 |
+
"openai/clip-vit-base-patch32"
|
21 |
+
)
|
22 |
+
|
23 |
+
# Load the pipeline
|
24 |
pipe = StableDiffusionPipeline.from_pretrained(
|
25 |
BASE_MODEL,
|
26 |
torch_dtype=torch.float32,
|
27 |
cache_dir=MODEL_CACHE,
|
28 |
+
safety_checker=safety_checker,
|
29 |
+
feature_extractor=feature_extractor,
|
30 |
use_safetensors=True
|
31 |
)
|
32 |
+
|
33 |
# Move to CPU and enable memory optimizations
|
34 |
pipe = pipe.to("cpu")
|
35 |
pipe.enable_attention_slicing()
|
36 |
+
pipe.enable_model_cpu_offload() # β
Requires accelerate>=0.17.0
|
37 |
+
|
38 |
return pipe
|
39 |
|
40 |
+
# Load once
|
41 |
pipeline = get_pipeline()
|
42 |
|
43 |
+
def generate_image(prompt, negative_prompt="", width=768, height=768, seed=-1, guidance_scale=7.5, num_inference_steps=25):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if seed == -1:
|
45 |
+
seed = random.randint(0, 2**31 - 1)
|
46 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
47 |
+
|
48 |
with torch.no_grad():
|
49 |
+
output = pipeline(
|
50 |
prompt=f"anime style, {prompt}",
|
51 |
negative_prompt=negative_prompt,
|
52 |
width=width,
|
|
|
54 |
guidance_scale=guidance_scale,
|
55 |
num_inference_steps=num_inference_steps,
|
56 |
generator=generator
|
57 |
+
)
|
58 |
+
image = output.images[0]
|
59 |
return image, seed
|
60 |
|
61 |
+
# Gradio UI
|
62 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
63 |
+
gr.Markdown("# π Anime Image Generator (Safe for Public)")
|
64 |
with gr.Row():
|
65 |
with gr.Column():
|
66 |
+
prompt = gr.Textbox(label="Prompt", lines=3)
|
67 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, lowres, bad anatomy")
|
68 |
generate_btn = gr.Button("Generate", variant="primary")
|
69 |
+
|
70 |
with gr.Accordion("Advanced", open=False):
|
71 |
width = gr.Slider(512, 1024, value=768, step=64, label="Width")
|
72 |
height = gr.Slider(512, 1024, value=768, step=64, label="Height")
|
73 |
guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance")
|
74 |
steps = gr.Slider(15, 50, value=25, step=1, label="Steps")
|
75 |
seed = gr.Number(label="Seed", value=-1)
|
76 |
+
|
77 |
with gr.Column():
|
78 |
output_image = gr.Image(label="Result", type="pil")
|
79 |
used_seed = gr.Textbox(label="Used Seed")
|
80 |
+
|
81 |
generate_btn.click(
|
82 |
generate_image,
|
83 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
|
|
85 |
)
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
+
demo.launch()
|