Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,18 @@ import random
|
|
3 |
import time
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
-
from diffusers import
|
|
|
7 |
|
8 |
-
# Configuration - Using optimized
|
9 |
-
MODEL_ID = "
|
10 |
MODEL_CACHE = "model_cache"
|
11 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
12 |
|
13 |
# Load model with CPU optimizations
|
14 |
def get_pipeline():
|
15 |
-
|
|
|
16 |
MODEL_ID,
|
17 |
torch_dtype=torch.float32,
|
18 |
cache_dir=MODEL_CACHE,
|
@@ -36,18 +38,16 @@ print(f"Model loaded in {load_time:.2f} seconds")
|
|
36 |
def generate_image(
|
37 |
prompt: str,
|
38 |
negative_prompt: str = "blurry, low quality, cartoon, drawing, text",
|
39 |
-
width: int =
|
40 |
-
height: int =
|
41 |
seed: int = -1,
|
42 |
guidance_scale: float = 2.0,
|
43 |
num_inference_steps: int = 4
|
44 |
):
|
45 |
-
# Set seed if not provided
|
46 |
if seed == -1:
|
47 |
seed = random.randint(0, 2147483647)
|
48 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
49 |
|
50 |
-
# Generate image with timing
|
51 |
start_gen = time.time()
|
52 |
with torch.no_grad():
|
53 |
image = pipeline(
|
@@ -64,73 +64,33 @@ def generate_image(
|
|
64 |
print(f"Generated {width}x{height} image in {gen_time:.2f} seconds")
|
65 |
return image, seed, f"Generated in {gen_time:.2f}s | Loaded in {load_time:.2f}s"
|
66 |
|
67 |
-
# Create
|
68 |
-
with gr.Blocks(theme=gr.themes.Soft(
|
69 |
-
gr.Markdown(""
|
70 |
-
# ⚡ FLUX Turbo Generator
|
71 |
-
**Professional Quality Images · Lightning Fast CPU Generation**
|
72 |
-
""")
|
73 |
|
74 |
with gr.Row():
|
75 |
-
with gr.Column(
|
76 |
-
prompt = gr.Textbox(
|
77 |
-
|
78 |
-
|
79 |
-
lines=3
|
80 |
-
)
|
81 |
-
negative_prompt = gr.Textbox(
|
82 |
-
label="Negative Prompt",
|
83 |
-
value="blurry, low quality, cartoon, drawing, text"
|
84 |
-
)
|
85 |
-
generate_btn = gr.Button("Generate Image", variant="primary")
|
86 |
|
87 |
-
with gr.Accordion("Advanced
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
guidance = gr.Slider(1.0, 5.0, value=2.0, step=0.1, label="Guidance")
|
93 |
-
steps = gr.Slider(1, 8, value=4, step=1, label="Steps")
|
94 |
seed = gr.Number(label="Seed", value=-1)
|
95 |
|
96 |
-
with gr.Column(
|
97 |
-
output_image = gr.Image(label="Result", type="pil"
|
98 |
used_seed = gr.Textbox(label="Used Seed")
|
99 |
perf_info = gr.Textbox(label="Performance Info")
|
100 |
-
|
101 |
-
# Generation handler
|
102 |
generate_btn.click(
|
103 |
generate_image,
|
104 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
105 |
outputs=[output_image, used_seed, perf_info]
|
106 |
)
|
107 |
-
|
108 |
-
# Professional examples
|
109 |
-
gr.Examples(
|
110 |
-
examples=[
|
111 |
-
[
|
112 |
-
"Professional photograph of a futuristic city at golden hour, cinematic lighting, ultra-detailed",
|
113 |
-
"blurry, cartoon, drawing, text, watermark",
|
114 |
-
768,
|
115 |
-
768
|
116 |
-
],
|
117 |
-
[
|
118 |
-
"Hyperrealistic portrait of a wise elderly man, detailed wrinkles, studio lighting, 8k resolution",
|
119 |
-
"anime, cartoon, deformed, ugly",
|
120 |
-
768,
|
121 |
-
1024
|
122 |
-
],
|
123 |
-
[
|
124 |
-
"Majestic mountain landscape with crystal clear lake reflection, autumn colors, sharp focus",
|
125 |
-
"low quality, blurry, people, buildings",
|
126 |
-
1024,
|
127 |
-
768
|
128 |
-
]
|
129 |
-
],
|
130 |
-
inputs=[prompt, negative_prompt, width, height],
|
131 |
-
label="Professional Examples"
|
132 |
-
)
|
133 |
|
134 |
-
# Launch the app
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
|
|
3 |
import time
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline, LCMScheduler
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
# Configuration - Using optimized model
|
10 |
+
MODEL_ID = "Lykon/dreamshaper-8-lcm"
|
11 |
MODEL_CACHE = "model_cache"
|
12 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
13 |
|
14 |
# Load model with CPU optimizations
|
15 |
def get_pipeline():
|
16 |
+
# Use traditional StableDiffusionPipeline instead of DiffusionPipeline
|
17 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
18 |
MODEL_ID,
|
19 |
torch_dtype=torch.float32,
|
20 |
cache_dir=MODEL_CACHE,
|
|
|
38 |
def generate_image(
|
39 |
prompt: str,
|
40 |
negative_prompt: str = "blurry, low quality, cartoon, drawing, text",
|
41 |
+
width: int = 512, # Reduced for CPU performance
|
42 |
+
height: int = 512, # Reduced for CPU performance
|
43 |
seed: int = -1,
|
44 |
guidance_scale: float = 2.0,
|
45 |
num_inference_steps: int = 4
|
46 |
):
|
|
|
47 |
if seed == -1:
|
48 |
seed = random.randint(0, 2147483647)
|
49 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
50 |
|
|
|
51 |
start_gen = time.time()
|
52 |
with torch.no_grad():
|
53 |
image = pipeline(
|
|
|
64 |
print(f"Generated {width}x{height} image in {gen_time:.2f} seconds")
|
65 |
return image, seed, f"Generated in {gen_time:.2f}s | Loaded in {load_time:.2f}s"
|
66 |
|
67 |
+
# Create interface
|
68 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
69 |
+
gr.Markdown("# ⚡ Turbo Image Generator")
|
|
|
|
|
|
|
70 |
|
71 |
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
prompt = gr.Textbox(label="Prompt", lines=3)
|
74 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality")
|
75 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
with gr.Accordion("Advanced", open=False):
|
78 |
+
width = gr.Slider(384, 768, value=512, step=64, label="Width")
|
79 |
+
height = gr.Slider(384, 768, value=512, step=64, label="Height")
|
80 |
+
guidance = gr.Slider(1.0, 5.0, value=2.0, step=0.1, label="Guidance")
|
81 |
+
steps = gr.Slider(1, 8, value=4, step=1, label="Steps")
|
|
|
|
|
82 |
seed = gr.Number(label="Seed", value=-1)
|
83 |
|
84 |
+
with gr.Column():
|
85 |
+
output_image = gr.Image(label="Result", type="pil")
|
86 |
used_seed = gr.Textbox(label="Used Seed")
|
87 |
perf_info = gr.Textbox(label="Performance Info")
|
88 |
+
|
|
|
89 |
generate_btn.click(
|
90 |
generate_image,
|
91 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
92 |
outputs=[output_image, used_seed, perf_info]
|
93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
95 |
if __name__ == "__main__":
|
96 |
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|