Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,42 +2,58 @@ import os
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
from diffusers import
|
6 |
-
from
|
7 |
|
8 |
-
# Configuration
|
9 |
-
MODEL_ID = "
|
10 |
-
LORA_ID = "
|
11 |
MODEL_CACHE = "model_cache"
|
12 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
13 |
|
14 |
-
# Initialize the pipeline with optimizations
|
15 |
def get_pipeline():
|
16 |
-
# Load
|
17 |
-
|
18 |
MODEL_ID,
|
19 |
-
|
20 |
cache_dir=MODEL_CACHE,
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"lora_layers.safetensors",
|
29 |
cache_dir=MODEL_CACHE
|
30 |
)
|
31 |
-
pipe.load_lora_weights(lcm_lora_path)
|
32 |
-
pipe.fuse_lora()
|
33 |
|
34 |
-
#
|
35 |
-
pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# CPU optimizations
|
38 |
pipe = pipe.to("cpu")
|
39 |
pipe.enable_attention_slicing()
|
40 |
-
pipe.enable_model_cpu_offload()
|
41 |
|
42 |
return pipe
|
43 |
|
@@ -50,15 +66,13 @@ def generate_image(
|
|
50 |
width: int = 768,
|
51 |
height: int = 768,
|
52 |
seed: int = -1,
|
53 |
-
guidance_scale: float =
|
54 |
-
num_inference_steps: int =
|
55 |
):
|
56 |
-
# Handle seed
|
57 |
if seed == -1:
|
58 |
seed = random.randint(0, 2147483647)
|
59 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
60 |
|
61 |
-
# Generate image
|
62 |
with torch.no_grad():
|
63 |
image = pipeline(
|
64 |
prompt=prompt,
|
@@ -67,118 +81,36 @@ def generate_image(
|
|
67 |
height=height,
|
68 |
guidance_scale=guidance_scale,
|
69 |
num_inference_steps=num_inference_steps,
|
70 |
-
generator=generator
|
71 |
-
output_type="pil"
|
72 |
).images[0]
|
73 |
|
74 |
return image, seed
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
"Ultra Realistic": "masterpiece, best quality, ultra detailed, 8k",
|
79 |
-
"Cinematic": "cinematic lighting, film grain, depth of field",
|
80 |
-
"Digital Art": "concept art, digital painting, sharp focus",
|
81 |
-
"Photorealistic": "photorealistic, DSLR, f/1.8, natural lighting"
|
82 |
-
}
|
83 |
-
|
84 |
-
def apply_enhancement(prompt, enhancement):
|
85 |
-
return f"{ENHANCEMENTS[enhancement]}, {prompt}"
|
86 |
-
|
87 |
-
# Create professional interface
|
88 |
-
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo:
|
89 |
-
gr.Markdown("""
|
90 |
-
# 🚀 FLUX Pro Image Generator
|
91 |
-
**Professional Quality Images · Lightning Fast on CPU**
|
92 |
-
*Powered by SSD-1B with LCM-LoRA technology*
|
93 |
-
""")
|
94 |
|
95 |
with gr.Row():
|
96 |
-
with gr.Column(
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
placeholder="Describe the image you want to create...",
|
101 |
-
lines=3,
|
102 |
-
elem_id="prompt-box"
|
103 |
-
)
|
104 |
-
enhancement = gr.Dropdown(
|
105 |
-
label="Quality Enhancement",
|
106 |
-
choices=list(ENHANCEMENTS.keys()),
|
107 |
-
value="Ultra Realistic"
|
108 |
-
)
|
109 |
-
negative_prompt = gr.Textbox(
|
110 |
-
label="Negative Prompt",
|
111 |
-
placeholder="What to exclude from the image...",
|
112 |
-
value="low quality, blurry, cartoon, drawing, sketch"
|
113 |
-
)
|
114 |
-
|
115 |
-
generate_btn = gr.Button("Generate Image", variant="primary", size="lg")
|
116 |
|
117 |
-
with gr.Accordion("Advanced
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
guidance = gr.Slider(1.0, 5.0, value=2.0, step=0.1, label="Guidance Scale")
|
123 |
-
steps = gr.Slider(4, 12, value=8, step=1, label="Generation Steps")
|
124 |
seed = gr.Number(label="Seed", value=-1)
|
125 |
|
126 |
-
with gr.Column(
|
127 |
-
output_image = gr.Image(
|
128 |
-
|
129 |
-
|
130 |
-
elem_id="output-image",
|
131 |
-
height=500
|
132 |
-
)
|
133 |
-
with gr.Group():
|
134 |
-
used_seed = gr.Textbox(label="Used Seed", interactive=False)
|
135 |
-
gr.Markdown("**Tip:** For best results, use detailed descriptive prompts")
|
136 |
-
|
137 |
-
# Enhancement application
|
138 |
-
enhancement.change(
|
139 |
-
fn=apply_enhancement,
|
140 |
-
inputs=[prompt, enhancement],
|
141 |
-
outputs=prompt
|
142 |
-
)
|
143 |
-
|
144 |
-
# Generation handler
|
145 |
generate_btn.click(
|
146 |
-
|
147 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
148 |
outputs=[output_image, used_seed]
|
149 |
)
|
150 |
-
|
151 |
-
# Professional examples
|
152 |
-
gr.Examples(
|
153 |
-
examples=[
|
154 |
-
[
|
155 |
-
"A futuristic cityscape at twilight, towering skyscrapers with neon lights reflecting on wet streets",
|
156 |
-
"Ultra Realistic",
|
157 |
-
"low quality, cartoon, drawing, blurry",
|
158 |
-
768,
|
159 |
-
768
|
160 |
-
],
|
161 |
-
[
|
162 |
-
"Portrait of a cyberpunk samurai warrior, intricate armor with glowing circuits, detailed face",
|
163 |
-
"Cinematic",
|
164 |
-
"anime, cartoon, sketch, simple background",
|
165 |
-
768,
|
166 |
-
1024
|
167 |
-
],
|
168 |
-
[
|
169 |
-
"Majestic fantasy castle floating in the clouds, golden sunlight, hyperdetailed",
|
170 |
-
"Digital Art",
|
171 |
-
"photograph, realistic, photo",
|
172 |
-
1024,
|
173 |
-
768
|
174 |
-
]
|
175 |
-
],
|
176 |
-
inputs=[prompt, enhancement, negative_prompt, width, height],
|
177 |
-
label="Professional Examples"
|
178 |
-
)
|
179 |
|
180 |
-
# Launch the app
|
181 |
if __name__ == "__main__":
|
182 |
-
demo.
|
183 |
-
server_name="0.0.0.0",
|
184 |
-
server_port=int(os.getenv("PORT", 7860))
|
|
|
2 |
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
|
8 |
+
# Configuration - Using Flux Model
|
9 |
+
MODEL_ID = "CompVis/Flux-Pro"
|
10 |
+
LORA_ID = "flux/lora-weights"
|
11 |
MODEL_CACHE = "model_cache"
|
12 |
os.makedirs(MODEL_CACHE, exist_ok=True)
|
13 |
|
|
|
14 |
def get_pipeline():
|
15 |
+
# Load Flux components
|
16 |
+
unet = UNet2DConditionModel.from_pretrained(
|
17 |
MODEL_ID,
|
18 |
+
subfolder="unet",
|
19 |
cache_dir=MODEL_CACHE,
|
20 |
+
torch_dtype=torch.float32
|
21 |
+
)
|
22 |
+
|
23 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
24 |
+
MODEL_ID,
|
25 |
+
subfolder="text_encoder",
|
26 |
+
cache_dir=MODEL_CACHE
|
27 |
)
|
28 |
|
29 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
30 |
+
MODEL_ID,
|
31 |
+
subfolder="tokenizer",
|
|
|
32 |
cache_dir=MODEL_CACHE
|
33 |
)
|
|
|
|
|
34 |
|
35 |
+
# Create pipeline
|
36 |
+
pipe = DiffusionPipeline.from_pretrained(
|
37 |
+
MODEL_ID,
|
38 |
+
unet=unet,
|
39 |
+
text_encoder=text_encoder,
|
40 |
+
tokenizer=tokenizer,
|
41 |
+
cache_dir=MODEL_CACHE,
|
42 |
+
torch_dtype=torch.float32,
|
43 |
+
safety_checker=None
|
44 |
+
)
|
45 |
+
|
46 |
+
# Load LoRA weights
|
47 |
+
lora_path = hf_hub_download(
|
48 |
+
LORA_ID,
|
49 |
+
"flux_lora.safetensors",
|
50 |
+
cache_dir=MODEL_CACHE
|
51 |
+
)
|
52 |
+
pipe.unet.load_attn_procs(lora_path)
|
53 |
|
54 |
# CPU optimizations
|
55 |
pipe = pipe.to("cpu")
|
56 |
pipe.enable_attention_slicing()
|
|
|
57 |
|
58 |
return pipe
|
59 |
|
|
|
66 |
width: int = 768,
|
67 |
height: int = 768,
|
68 |
seed: int = -1,
|
69 |
+
guidance_scale: float = 7.5,
|
70 |
+
num_inference_steps: int = 25
|
71 |
):
|
|
|
72 |
if seed == -1:
|
73 |
seed = random.randint(0, 2147483647)
|
74 |
generator = torch.Generator(device="cpu").manual_seed(seed)
|
75 |
|
|
|
76 |
with torch.no_grad():
|
77 |
image = pipeline(
|
78 |
prompt=prompt,
|
|
|
81 |
height=height,
|
82 |
guidance_scale=guidance_scale,
|
83 |
num_inference_steps=num_inference_steps,
|
84 |
+
generator=generator
|
|
|
85 |
).images[0]
|
86 |
|
87 |
return image, seed
|
88 |
|
89 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
90 |
+
gr.Markdown("# 🌀 FLUX-Pro Image Generator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
prompt = gr.Textbox(label="Prompt", lines=3)
|
95 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, low quality")
|
96 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
with gr.Accordion("Advanced", open=False):
|
99 |
+
width = gr.Slider(512, 1024, value=768, step=64, label="Width")
|
100 |
+
height = gr.Slider(512, 1024, value=768, step=64, label="Height")
|
101 |
+
guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance")
|
102 |
+
steps = gr.Slider(15, 50, value=25, step=1, label="Steps")
|
|
|
|
|
103 |
seed = gr.Number(label="Seed", value=-1)
|
104 |
|
105 |
+
with gr.Column():
|
106 |
+
output_image = gr.Image(label="Result", type="pil")
|
107 |
+
used_seed = gr.Textbox(label="Used Seed")
|
108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
generate_btn.click(
|
110 |
+
generate_image,
|
111 |
inputs=[prompt, negative_prompt, width, height, seed, guidance, steps],
|
112 |
outputs=[output_image, used_seed]
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
|
|
115 |
if __name__ == "__main__":
|
116 |
+
demo.launch()
|
|
|
|