File size: 1,845 Bytes
acc8d06 358f50f f7f6e8d acc8d06 f7f6e8d 292e32a acc8d06 292e32a f7f6e8d 292e32a f7f6e8d 292e32a f7f6e8d 292e32a f7f6e8d 292e32a f7f6e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from comet import download_model, load_from_checkpoint
import os
model_path = os.environ.get("HF_MODEL_PATH", download_model("wasanx/ComeTH"))
model = load_from_checkpoint(model_path)
def score_translation(src_text, mt_text):
translations = [{"src": src_text, "mt": mt_text}]
results = model.predict(translations, batch_size=1, gpus=1)
return results['scores'][0]
examples = [
["The weather is beautiful today.", "วันนี้อากาศดีมาก"],
["I need to go to the hospital.", "ฉันต้องไปโรงพยาบาล"],
["This restaurant serves delicious food.", "ร้านอาหารนี้เสิร์ฟอาหารอร่อย"],
["Can you help me find the nearest train station?", "คุณช่วยฉันหาสถานีรถไฟที่ใกล้ที่สุดได้ไหม"]
]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ComeTH Translation Quality Evaluator")
with gr.Row():
with gr.Column():
src_input = gr.Textbox(label="Source Text (English)", placeholder="Enter English text here...")
mt_input = gr.Textbox(label="Machine Translation (Thai)", placeholder="Enter Thai translation here...")
score_button = gr.Button("Evaluate Translation", variant="primary")
with gr.Column():
score_output = gr.Label(label="Quality Scores")
gr.Markdown("### Higher scores indicate better translation quality across multiple dimensions")
gr.Examples(examples=examples, inputs=[src_input, mt_input], outputs=score_output, fn=score_translation)
score_button.click(fn=score_translation, inputs=[src_input, mt_input], outputs=score_output)
if __name__ == "__main__":
demo.launch() |