board-recognizer / identify_cards.py
wai572's picture
init
27db1bc
raw
history blame
29.4 kB
import datetime
import math
import os
import cv2
import numpy as np
from PIL import Image
from transformers import pipeline
from utils import arrange_hand
# # --- グローバル変数としてTrOCRパイプラインを初期化 ---
# print("TrOCRのAIモデルを読み込んでいます...(初回は数分かかります)")
# try:
# trocr_pipeline = pipeline(
# "image-to-text", model="microsoft/trocr-base-printed"
# )
# print("TrOCRの準備が完了しました。")
# except Exception as e:
# print(f"TrOCRモデルのロード中にエラーが発生しました: {e}")
# trocr_pipeline = None
generate_kwargs_sampling = {
"do_sample": True,
"temperature": 0.7,
"top_k": 50,
"max_length": 2,
}
SUIT_TEMPLATE_PATH = "templates/suits/"
SUITS_BY_COLOR = {"black": "S", "green": "C", "red": "H", "orange": "D"}
SCALE_STANDARD = 2032
def load_suit_templates(template_path):
templates = {}
if not os.path.exists(template_path):
return templates
for filename in os.listdir(template_path):
if filename.endswith(".png"):
name = os.path.splitext(filename)[0]
img = cv2.imread(
os.path.join(template_path, filename), cv2.IMREAD_GRAYSCALE
)
if img is not None:
templates[name] = img
return templates
def get_img_with_rect(img, rects, color, thickness):
_img = img.copy()
for rect in rects:
if isinstance(rect, tuple):
x, y, w, h = rect
else:
(x, y), (w, h) = rect["pos"], rect["size"]
cv2.rectangle(_img, (x, y), (x + w, y + h), color)
return _img
def save_img_with_rect(filename, img, rects, color=(0, 255, 0), thickness=2):
cv2.imwrite(filename, get_img_with_rect(img, rects, color, thickness))
def get_masks(hsv):
board_candidates = [
((15, 200, 160), (35, 255, 245)), # yellow
((100, 0, 0), (179, 60, 80)), # black
((35, 200, 100), (50, 255, 160)), # light green
((170, 170, 150), (179, 255, 220)), # red
((160, 70, 170), (180, 120, 240)), # pink
((0, 200, 160), (15, 255, 240)), # orange
((90, 110, 160), (120, 210, 240)), # blue
]
for color in board_candidates:
yield cv2.inRange(hsv, color[0], color[1])
def find_best_contour(image, is_best):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
i = 0
for mask in get_masks(hsv):
kernel = np.ones((7, 7), np.uint8)
closed_mask = cv2.morphologyEx(
mask, cv2.MORPH_CLOSE, kernel, iterations=2
)
cv2.imwrite(f"debug_mask{i}.jpg", closed_mask)
contours, _ = cv2.findContours(
closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
best_contour = max(contours, key=cv2.contourArea) if contours else None
if best_contour is not None and cv2.contourArea(best_contour) > 50000:
b, res = is_best(best_contour)
if b:
return res
i += 1
return None
def find_board_corners(image):
"""
画像から黄色いボードの輪郭を見つけ、その4つの角の座標を返す。
"""
def is_best(best_contour):
peri = cv2.arcLength(best_contour, True)
approx = cv2.approxPolyDP(best_contour, 0.02 * peri, True)
# 輪郭が4つの角を持つ場合、それを返す
is_rect = len(approx) >= 4
return is_rect, approx.reshape(-1, 2) if is_rect else None
points = find_best_contour(image, is_best)
# if not points:
# return None
sum = points.sum(axis=1)
diff = np.diff(points, axis=1)
top_left = points[np.argmin(sum)]
bottom_right = points[np.argmax(sum)]
top_right = points[np.argmax(diff)]
bottom_left = points[np.argmin(diff)]
corners = np.array(
[top_left, top_right, bottom_right, bottom_left], dtype="int32"
)
return corners
def order_points(pts):
"""
4つの点を左上、右上、右下、左下の順に並べ替える。
"""
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)] # 左上
rect[2] = pts[np.argmax(s)] # 右下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)] # 右上
rect[3] = pts[np.argmax(diff)] # 左下
return rect
def find_center_box(image):
def is_best(best_contour):
if best_contour is not None and cv2.contourArea(best_contour) > 50000:
print(f"rect:{cv2.boundingRect(best_contour)}")
x, y, w, h = cv2.boundingRect(best_contour)
h_parent, w_parent, _ = image.shape
if (w < h and (w > 0.34 * w_parent or h > 0.8 * h_parent)) or (
w >= h and (h > 0.34 * h_parent or w > 0.8 * w_parent)
):
return False, None
return True, cv2.boundingRect(best_contour)
return False, None
return find_best_contour(image, is_best)
def find_center_seal(image, bw, bh):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mask = cv2.inRange(gray, 190, 255)
kernel = np.ones((7, 7), np.uint8)
closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
cv2.imwrite(f"debug_seal.jpg", closed_mask)
contours, _ = cv2.findContours(
closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
_w = min(w, h)
_h = max(w, h)
if (
_w > 0.33 * bw
and _w < 0.44 * bw
and _h > 0.21 * bh
and _h < 0.24 * bh
):
return x, y
return -1, -1
def rotate_rect(box, w_parent, h_parent, angle):
x, y, w, h = box
if angle % 360 == 0:
return (x, y, w, h)
elif angle % 360 == 90:
return (h_parent - h - y, x, h, w)
elif angle % 360 == 180:
return (w_parent - w - x, h_parent - h - y, w, h)
elif angle % 360 == 270:
return (y, w_parent - w - x, h, w)
def determine_and_correct_orientation(image, progress_fn):
"""
画像の向きを判断し、必要であれば回転させて補正した画像を返す。
"""
progress_fn("写真の向きを自動分析中...")
# ★★★ ステップ1: ボードの4つの角を検出し、射影変換を行う ★★★
print("ボードの傾きを検出・補正しています...")
corners = find_board_corners(image)
print(corners)
if corners is None:
print("エラー: ボードの角を検出できませんでした。")
warped_image = image
else:
# 4つの角を正しい順序に並べ替える
ordered_corners = order_points(corners.astype(np.float32))
(tl, tr, br, bl) = ordered_corners
# 変換後の画像の幅と高さを計算
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
boardWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
boardHeight = max(int(heightA), int(heightB))
imageHeight, imageWidth, _ = image.shape
CanvasWidth, CanvasHeight = int(imageWidth * 1.2), int(
imageHeight * 1.2
)
x_offset = (CanvasWidth - boardWidth) // 2
y_offset = (CanvasHeight - boardHeight) // 2
# 変換後の座標を定義
dst_pts = np.array(
[
[x_offset, y_offset],
[x_offset + boardWidth - 1, y_offset],
[x_offset + boardWidth - 1, y_offset + boardHeight - 1],
[x_offset, y_offset + boardHeight - 1],
],
dtype="float32",
)
print(dst_pts)
# 射影変換行列を取得し、画像を補正
matrix = cv2.getPerspectiveTransform(ordered_corners, dst_pts)
warped_image = cv2.warpPerspective(
image, matrix, (CanvasWidth, CanvasHeight)
)
# デバッグ用に補正後画像を保存
cv2.imwrite("debug_warped_image.jpg", warped_image)
print("傾き補正後の画像を debug_warped_image.jpg に保存しました。")
# まず中央のボードを見つける
box = find_center_box(warped_image)
if box is None:
progress_fn(
"警告: ボードが見つからないため、向きの自動補正をスキップします。"
)
return warped_image, box, 1
print("box is found")
bx, by, bw, bh = box
h, w, _ = warped_image.shape
scale = max(bw, bh) / SCALE_STANDARD
board_img = warped_image[by : by + bh, bx : bx + bw]
print(box)
image_rotated = warped_image.copy()
if bh < bw:
board_img = cv2.rotate(board_img, cv2.ROTATE_90_CLOCKWISE)
image_rotated = cv2.rotate(warped_image, cv2.ROTATE_90_CLOCKWISE)
box = rotate_rect(box, w, h, 90)
bx, by, bw, bh = box
h, w, _ = image_rotated.shape
_, sy = find_center_seal(board_img, bw, bh)
if sy == -1:
progress_fn("ボードのシールが検出できませんでした")
return image_rotated, box, scale
print(sy, bx, by, bw, bh)
if sy < bh / 2:
return image_rotated, box, scale
else:
return (
cv2.rotate(image_rotated, cv2.ROTATE_180),
rotate_rect(box, w, h, 180),
scale,
)
def get_not_white_mask(img):
lab_patch = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l_channel = lab_patch[:, :, 0]
a_channel = lab_patch[:, :, 1]
b_channel = lab_patch[:, :, 2]
mask_l = cv2.threshold(l_channel, 170, 255, cv2.THRESH_BINARY_INV)[1]
mask_a = cv2.threshold(a_channel, 120, 255, cv2.THRESH_BINARY)[1]
mask_b = cv2.threshold(b_channel, 120, 255, cv2.THRESH_BINARY)[1]
mask_ab = cv2.bitwise_or(mask_a, mask_b)
text_mask = cv2.bitwise_and(mask_l, mask_ab)
return text_mask
# ★★★ 新しいルールベースの色判定関数(診断モード付き) ★★★
def get_suit_from_image_rules(rank_image_patch, thresholds):
if rank_image_patch is None or rank_image_patch.size == 0:
return "unknown"
text_mask = get_not_white_mask(rank_image_patch)
# デバッグ用のフォルダがなければ作成
debug_dir = "debug_chars"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
# マスクを使って元のカラー画像から文字部分のみを抽出
masked_char_image = cv2.bitwise_and(
rank_image_patch, rank_image_patch, mask=text_mask
)
# ユニークなファイル名を生成
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
debug_filename = os.path.join(debug_dir, f"masked_char_{timestamp}.png")
# 画像を保存
cv2.imwrite(debug_filename, masked_char_image)
lab_patch = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2LAB)
avg_lab = cv2.mean(lab_patch, mask=text_mask)
if cv2.countNonZero(text_mask) < 20:
print(f" 診断: 文字ピクセルが少なすぎるため判定不可 {timestamp}")
return "unknown", avg_lab
return get_suit_from_color_rules(avg_lab, thresholds, timestamp)
def get_suit_from_color_rules(avg_lab, thresholds, timestamp=0):
L, a, b = avg_lab[0], avg_lab[1], avg_lab[2]
# --- 診断ログを出力 ---
print(f" L: {L:.1f}, a: {a:.1f}, b: {b:.1f} {timestamp}")
# ルールに基づいて判定
# ルール1: 明るさ(L)で黒を判定
if L < thresholds["L_black"]:
print(" ルール1: 明るさ(L)が低いため 'black' と判定")
return "black", avg_lab
# ルール2: a値で緑か赤系かを判断
# a < 128 が緑側, a > 128 が赤側
if a < thresholds["a_green"]: # 緑側の閾値
# if a > thresholds["a_black"] and b > thresholds["b_black"]:
# if a > thresholds["a_black"] and b < thresholds["b_black"]:
# print(" ルール6: 緑っぽいけど 'black' と判定")
# return "black", avg_lab
# elif a > thresholds["a_black2"] and b < thresholds["b_black2"]:
# print(" ルール8: 緑っぽいけど 'black' と判定2")
# return "black", avg_lab
if a + b > thresholds["ab_black"]:
print(" ルール9: a + bが高いため 'black' と判定")
return "black", avg_lab
if b - a < thresholds["ba_black"]:
print(" ルール6: b値がa値を下回っているため 'black' と判定")
return "black", avg_lab
print(" ルール : blackじゃないため 'green' と判定")
return "green", avg_lab
# if b > thresholds["b_black2"]:
# print(" ルール9: b値が高いため 'black' と判定")
# return "black", avg_lab
# if b - a > thresholds["ba_green"]:
# print(" ルール6: b値がa値を上回っているため 'green' と判定")
# return "green", avg_lab
# if b < thresholds["b_black"]:
# print(" ルール8: 緑っぽいけど 'black' と判定")
# return "black", avg_lab
# print(" ルール2: a値が低いため 'green' と判定")
# return "green", avg_lab
elif a > thresholds["a_red"]: # 赤側の閾値
# ルール3: b値で赤とオレンジを区別
# b > 128 が黄側, b < 128 が青側
if a - b > thresholds["a_b_red"]:
print(" ルール : a-bが大きいため 'red' と判定")
return "red", avg_lab
else:
print(" ルール : a-bが小さいため 'orange'と判定")
return "orange", avg_lab
# if b > thresholds["b_orange"]: # 黄色みが強ければオレンジ
# if b < thresholds["b_red"] and a > thresholds["a_orange"]:
# print(" ルール7: オレンジっぽいけど 'red' と判定")
# return "red", avg_lab
# print(" ルール3: a値が高く、b値も高いため 'orange' と判定")
# return "orange", avg_lab
# else: # それ以外は赤
# print(
# " ルール4: a値が高く、b値がそれほど高くないため 'red' と判定"
# )
# return "red", avg_lab
print(" ルール5: どのLABのルールにも一致しなかったため 'black' と判定")
return "black", avg_lab
def preprocess_img(img):
gray_region = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
debug_region = img.copy()
# --- ステップ1: カードマスクの作成 (変更なし) ---
_, card_mask = cv2.threshold(gray_region, 160, 255, cv2.THRESH_BINARY)
kernel_mask = np.ones((5, 5), np.uint8)
card_mask = cv2.dilate(card_mask, kernel_mask, iterations=3)
# cv2.imwrite(f"debug_card_mask_{player_name}.jpg", card_mask)
# --- ステップ2: Cannyエッジ検出による前処理 ---
# メディアンフィルタで元画像のノイズを軽く除去
denoised_gray = cv2.medianBlur(gray_region, 3)
thresholded = cv2.adaptiveThreshold(
denoised_gray,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
21,
7,
)
preprocessed = cv2.bitwise_and(thresholded, thresholded, mask=card_mask)
kernel_open = np.ones((3, 3), np.uint8)
preprocessed = cv2.morphologyEx(preprocessed, cv2.MORPH_OPEN, kernel_open)
return preprocessed
def filter_size(contours, scale, img):
res = []
for i, cnt in enumerate(contours):
x, y, w, h = cv2.boundingRect(cnt)
# サイズフィルタを適用
# if y < 400 and w * h > 1500 * scale * scale:
# print(f"{w}x{h} at ({x}, {y})")
if (
40 * scale < h < 95 * scale
and 25 * scale < w < 60 * scale
and 0.25 < w / h < 0.9
and 1500 * scale * scale < w * h < 4000 * scale * scale
):
pad = 10
cropped_img = img[
max(0, y - pad) : min(y + h + pad, img.shape[0]),
max(0, x - pad) : min(x + w + pad, img.shape[1]),
]
no_padding_img = img[
max(0, y) : min(y + h, img.shape[0]),
max(0, x) : min(x + w, img.shape[1]),
]
# hsv_patch = cv2.cvtColor(no_padding_img, cv2.COLOR_BGR2HSV)
# s_channel = hsv_patch[:, :, 1]
# v_channel = hsv_patch[:, :, 2]
# mask_s = cv2.threshold(s_channel, 30, 255, cv2.THRESH_BINARY)[1]
# mask_v = cv2.threshold(v_channel, 210, 255, cv2.THRESH_BINARY_INV)[
# 1
# ]
text_mask = get_not_white_mask(no_padding_img)
# デバッグ用のフォルダがなければ作成
debug_dir = "debug_chars"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
# マスクを使って元のカラー画像から文字部分のみを抽出
masked_char_image = cv2.bitwise_and(
no_padding_img, no_padding_img, mask=text_mask
)
res.append(
{
"img": cropped_img,
"no_pad": no_padding_img,
"pos": (x, y),
"size": (w, h),
}
)
return res
def filter_thickness(
candidates,
scale,
):
res = []
for candidate in candidates:
no_padding_img = candidate["no_pad"]
cropped_img = candidate["img"]
text_mask = get_not_white_mask(no_padding_img)
# デバッグ用のフォルダがなければ作成
debug_dir = "debug_chars"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
# マスクを使って元のカラー画像から文字部分のみを抽出
masked_char_image = cv2.bitwise_and(
no_padding_img, no_padding_img, mask=text_mask
)
cropped_bin = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2GRAY)
cropped_dist = cv2.distanceTransform(cropped_bin, cv2.DIST_L2, 3)
_, max_val, _, _ = cv2.minMaxLoc(cropped_dist)
debug_dir = "debug_chars"
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
debug_filename = os.path.join(debug_dir, f"dist_char_{timestamp}.png")
# 画像を保存
cv2.imwrite(debug_filename, cropped_dist)
print(
f" 候補 at ({candidate['pos']}) - 厚みスコア: {max_val:.2f} {timestamp}"
)
if max_val > 12.0 * scale and max_val < 100000:
print(" -> スートと判断し除外")
continue
else:
print(" -> ランク候補として採用")
if cropped_img.size > 0:
candidate["thickness"] = max_val
res.append(candidate)
return res
def filter_suit(candidates, suit_templates, threshold):
filtered = []
for candidate in candidates:
is_suit = False
candidate_gray = cv2.cvtColor(candidate["img"], cv2.COLOR_BGR2GRAY)
for _, template in suit_templates.items():
resized_template = cv2.resize(
template, (candidate["size"][0], candidate["size"][1])
)
res = cv2.matchTemplate(
candidate_gray, resized_template, cv2.TM_CCOEFF_NORMED
)
_, max_val, _, _ = cv2.minMaxLoc(res)
if max_val > threshold:
is_suit = True
break
if not is_suit:
filtered.append(candidate)
return filtered
def filter_vertically(candidates, scale):
res = []
for candidate in candidates:
x, y = candidate["pos"]
is_eliminated = False
for _candidate in candidates:
_x, _y = _candidate["pos"]
if (
(
x - _x < 35 * scale
and x - _x > -35 * scale
and y - _y > 40 * scale
)
or (
x - _x < 80 * scale
and x - _x > -80 * scale
and y - _y > 90 * scale
)
or (
x - _x < 300 * scale
and x - _x > -300 * scale
and y - _y > 170 * scale
)
):
is_eliminated = True
if not is_eliminated:
res.append(candidate)
return res
def filter_uniform(candidates, threshold=20.0):
res = []
for candidate in candidates:
text_mask = get_not_white_mask(candidate["no_pad"])
if cv2.countNonZero(text_mask) > 20:
lab_patch = cv2.cvtColor(candidate["no_pad"], cv2.COLOR_BGR2LAB)
_, std_dev = cv2.meanStdDev(lab_patch, mask=text_mask)
color_variance = math.sqrt(std_dev[1][0] ** 2 + std_dev[2][0] ** 2)
# デバッグ用に標準偏差を出力
print(
f" 候補 at ({candidate['pos']}) - 色のばらつき: {color_variance:.2f}"
)
# 標準偏差が閾値より小さければ、色が均一であると判断
if color_variance < threshold:
res.append(candidate)
else:
print(" -> 絵柄と判断し、除外")
return res
def find_rank_candidates(region_image, suit_templates, player_name, scale=1):
print(scale)
if region_image is None or region_image.size == 0:
return []
preprocessed = preprocess_img(region_image)
cv2.imwrite(f"debug_ocr_preprocess_{player_name}.jpg", preprocessed)
contours, _ = cv2.findContours(
preprocessed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
SUIT_FILTER_THRESHOLD = 0.6
candidates_size = filter_size(contours, scale, region_image)
candidates_thickness = filter_thickness(candidates_size, scale)
candidates_suit = filter_suit(
candidates_thickness, suit_templates, SUIT_FILTER_THRESHOLD
)
candidates_vertically = filter_vertically(candidates_suit, scale)
candidates_uniform = filter_uniform(candidates_vertically)
save_img_with_rect(
f"debug_ocr_thickness_{player_name}.jpg",
region_image,
candidates_thickness,
)
save_img_with_rect(
f"debug_ocr_candidates_{player_name}.jpg",
region_image,
candidates_size,
)
save_img_with_rect(
f"debug_filter_process_{player_name}.jpg",
region_image,
candidates_uniform,
)
print(
f"フィルタリング過程を debug_filter_process_{player_name}.jpg に保存しました。"
)
print(len(candidates_uniform))
return candidates_uniform
# ★★★ RGBで色を分析するヘルパー関数 ★★★
def get_avg_rgb_from_patch(patch):
"""画像パッチから文字部分の平均色(RGB)を計算する"""
patch_gray = cv2.cvtColor(patch, cv2.COLOR_BGR2GRAY)
_, text_mask = cv2.threshold(patch_gray, 180, 230, cv2.THRESH_BINARY_INV)
if cv2.countNonZero(text_mask) == 0:
return None
# OpenCVの平均色はBGR順なので、RGB順に並べ替えて返す
avg_bgr = cv2.mean(patch, mask=text_mask)[:3]
return (avg_bgr[2], avg_bgr[1], avg_bgr[0]) # (R, G, B)
# ★★★ 最終改善版:Cannyエッジと輪郭階層を利用したカード認識関数 ★★★
def recognize_cards(region_image, suit_templates, player_name, trocr_pipeline):
rank_candidates = find_rank_candidates(
region_image, suit_templates, player_name
)
debug_region = region_image.copy()
VALID_RANKS = [
"A",
"K",
"Q",
"J",
"10",
"9",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
]
recognized_ranks = []
if rank_candidates and trocr_pipeline:
# 重複候補をマージする
# ...(今回は省略。まずは検出できるかが重要)...
candidate_pil_images = [
Image.fromarray(cv2.cvtColor(c["img"], cv2.COLOR_BGR2RGB))
for c in rank_candidates
]
ocr_results = trocr_pipeline(candidate_pil_images)
print([result[0]["generated_text"] for result in ocr_results])
# ocr_results = trocr_pipeline(candidate_pil_images, generate_kwargs=generate_kwargs_sampling)
for i, result in enumerate(ocr_results):
text = result[0]["generated_text"].upper().strip()
# TrOCRが誤認識しやすい文字を補正
if text == "1O":
text = "T"
if text == "0" or text == "O":
text = "T"
if text in VALID_RANKS:
candidate = rank_candidates[i]
# --- 診断ログを出力 ---
print(f"--- 診断中: ランク '{text}' at {candidate['pos']} ---")
color_name = get_suit_from_image_rules(candidate["img"])
print(f" -> 色判定結果: {color_name}")
if color_name in SUITS_BY_COLOR:
suit = SUITS_BY_COLOR[color_name]
card_name = f"{suit}{text}"
is_duplicate = any(
math.sqrt(
(fc["pos"][0] - candidate["pos"][0]) ** 2
+ (fc["pos"][1] - candidate["pos"][1]) ** 2
)
< 20
for fc in recognized_ranks
)
if not is_duplicate:
recognized_ranks.append(
{"name": card_name, "pos": candidate["pos"]}
)
for card in recognized_ranks:
cv2.putText(
debug_region,
card["name"],
(card["pos"][0], card["pos"][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 0),
2,
cv2.LINE_AA,
)
cv2.imwrite(f"debug_detection_{player_name}.jpg", debug_region)
print(
f"{player_name} の検出結果を debug_detection_{player_name}.jpg に保存しました。"
)
return [c["name"] for c in recognized_ranks]
def main(image_path):
suit_templates = load_suit_templates(SUIT_TEMPLATE_PATH)
if not suit_templates:
print(
"エラー: templates/suits フォルダにスートのテンプレート画像が見つかりません。"
)
return
image = cv2.imread(image_path)
if image is None:
return
box = find_center_box(image)
if box is None:
return
bx, by, bw, bh = box
h, w, _ = image.shape
margin = 200
player_regions = {
"north": image[0:by, :],
"south": image[by + bh : h, :],
"west": image[by - margin : by + bh + margin, 0:bx],
"east": image[by - margin : by + bh + margin, bx + bw : w],
}
for player, region in player_regions.items():
if region is None or region.size == 0:
continue
if player == "north":
player_regions[player] = cv2.rotate(region, cv2.ROTATE_180)
elif player == "east":
player_regions[player] = cv2.rotate(
region, cv2.ROTATE_90_CLOCKWISE
)
elif player == "west":
player_regions[player] = cv2.rotate(
region, cv2.ROTATE_90_COUNTERCLOCKWISE
)
all_hands = {}
for player, region in player_regions.items():
cards = recognize_cards(region, suit_templates, player)
all_hands[player] = arrange_hand(cards)
print("\n--- 最終識別結果 (ルールベース色判定) ---")
for player, hand in all_hands.items():
print(f"{player.capitalize()}: {', '.join(hand)}")
print("---------------------------------------")
if __name__ == "__main__":
IMAGE_FILE_PATH = "PXL_20250611_101254508.jpg"
# if trocr_pipeline:
# main(IMAGE_FILE_PATH)
# else:
# print("TrOCRパイプラインが初期化されていないため、処理を中止します。")
# else:
# print("TrOCRパイプラインが初期化されていないため、処理を中止します。")