Spaces:
Running
Running
File size: 28,777 Bytes
27db1bc 7e908e1 27db1bc 682351e 27db1bc 682351e 27db1bc 682351e 27db1bc 682351e 27db1bc 1eaacfa 27db1bc 08a1a0e 682351e 5c07ac9 682351e 27db1bc 682351e 27db1bc 08a1a0e 682351e 27db1bc 682351e 27db1bc c352c21 27db1bc c352c21 7e908e1 27db1bc 682351e 27db1bc 682351e 27db1bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
import datetime
import math
import os
import cv2
import numpy as np
from PIL import Image
from utils import arrange_hand
# from transformers import pipeline
# # --- グローバル変数としてTrOCRパイプラインを初期化 ---
# print("TrOCRのAIモデルを読み込んでいます...(初回は数分かかります)")
# try:
# trocr_pipeline = pipeline(
# "image-to-text", model="microsoft/trocr-base-printed"
# )
# print("TrOCRの準備が完了しました。")
# except Exception as e:
# print(f"TrOCRモデルのロード中にエラーが発生しました: {e}")
# trocr_pipeline = None
generate_kwargs_sampling = {
"do_sample": True,
"temperature": 0.7,
"top_k": 50,
"max_length": 2,
}
SUIT_TEMPLATE_PATH = "templates/suits/"
SUITS_BY_COLOR = {"black": "S", "green": "C", "red": "H", "orange": "D"}
SCALE_STANDARD = 2032
IS_DEBUG = False
def load_suit_templates(template_path):
templates = {}
if not os.path.exists(template_path):
return templates
for filename in os.listdir(template_path):
if filename.endswith(".png"):
name = os.path.splitext(filename)[0]
img = cv2.imread(
os.path.join(template_path, filename), cv2.IMREAD_GRAYSCALE
)
if img is not None:
templates[name] = img
return templates
def get_img_with_rect(img, rects, color, thickness):
_img = img.copy()
for rect in rects:
if isinstance(rect, tuple):
x, y, w, h = rect
else:
(x, y), (w, h) = rect["pos"], rect["size"]
cv2.rectangle(_img, (x, y), (x + w, y + h), color)
return _img
def save_img_with_rect(filename, img, rects, color=(0, 255, 0), thickness=2):
if IS_DEBUG:
cv2.imwrite(filename, get_img_with_rect(img, rects, color, thickness))
def get_masks(hsv):
board_candidates = [
((15, 200, 160), (35, 255, 245)), # yellow
((100, 0, 0), (179, 60, 80)), # black
((35, 200, 100), (50, 255, 160)), # light green
((170, 170, 150), (179, 255, 220)), # red
((160, 70, 170), (180, 120, 240)), # pink
((0, 200, 160), (15, 255, 240)), # orange
((90, 110, 160), (120, 210, 240)), # blue
]
for color in board_candidates:
yield cv2.inRange(hsv, color[0], color[1])
def find_best_contour(image, is_best):
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
i = 0
for mask in get_masks(hsv):
kernel = np.ones((7, 7), np.uint8)
closed_mask = cv2.morphologyEx(
mask, cv2.MORPH_CLOSE, kernel, iterations=2
)
if IS_DEBUG:
cv2.imwrite(f"debug_mask{i}.jpg", closed_mask)
contours, _ = cv2.findContours(
closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
best_contour = max(contours, key=cv2.contourArea) if contours else None
if best_contour is not None and cv2.contourArea(best_contour) > 50000:
b, res = is_best(best_contour)
if b:
return res
i += 1
return None
def find_board_corners(image):
"""
画像から黄色いボードの輪郭を見つけ、その4つの角の座標を返す。
"""
def is_best(best_contour):
peri = cv2.arcLength(best_contour, True)
approx = cv2.approxPolyDP(best_contour, 0.02 * peri, True)
# 輪郭が4つの角を持つ場合、それを返す
is_rect = len(approx) >= 4
return is_rect, approx.reshape(-1, 2) if is_rect else None
points = find_best_contour(image, is_best)
# if not points:
# return None
sum = points.sum(axis=1)
diff = np.diff(points, axis=1)
top_left = points[np.argmin(sum)]
bottom_right = points[np.argmax(sum)]
top_right = points[np.argmax(diff)]
bottom_left = points[np.argmin(diff)]
corners = np.array(
[top_left, top_right, bottom_right, bottom_left], dtype="int32"
)
return corners
def order_points(pts):
"""
4つの点を左上、右上、右下、左下の順に並べ替える。
"""
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)] # 左上
rect[2] = pts[np.argmax(s)] # 右下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)] # 右上
rect[3] = pts[np.argmax(diff)] # 左下
return rect
def find_center_box(image):
def is_best(best_contour):
if best_contour is not None and cv2.contourArea(best_contour) > 50000:
print(f"rect:{cv2.boundingRect(best_contour)}")
x, y, w, h = cv2.boundingRect(best_contour)
h_parent, w_parent, _ = image.shape
if (w < h and (w > 0.34 * w_parent or h > 0.8 * h_parent)) or (
w >= h and (h > 0.34 * h_parent or w > 0.8 * w_parent)
):
return False, None
return True, cv2.boundingRect(best_contour)
return False, None
return find_best_contour(image, is_best)
def find_center_seal(image, bw, bh):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mask = cv2.inRange(gray, 190, 255)
kernel = np.ones((7, 7), np.uint8)
closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
if IS_DEBUG:
cv2.imwrite(f"debug_seal.jpg", closed_mask)
contours, _ = cv2.findContours(
closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
_w = min(w, h)
_h = max(w, h)
if (
_w > 0.33 * bw
and _w < 0.44 * bw
and _h > 0.21 * bh
and _h < 0.24 * bh
):
return x, y
return -1, -1
def rotate_rect(box, w_parent, h_parent, angle):
x, y, w, h = box
if angle % 360 == 0:
return (x, y, w, h)
elif angle % 360 == 90:
return (h_parent - h - y, x, h, w)
elif angle % 360 == 180:
return (w_parent - w - x, h_parent - h - y, w, h)
elif angle % 360 == 270:
return (y, w_parent - w - x, h, w)
def determine_and_correct_orientation(image, progress_fn):
"""
画像の向きを判断し、必要であれば回転させて補正した画像を返す。
"""
progress_fn("写真の向きを自動分析中...")
# ★★★ ステップ1: ボードの4つの角を検出し、射影変換を行う ★★★
print("ボードの傾きを検出・補正しています...")
corners = find_board_corners(image)
print(corners)
if corners is None:
print("エラー: ボードの角を検出できませんでした。")
warped_image = image
else:
# 4つの角を正しい順序に並べ替える
ordered_corners = order_points(corners.astype(np.float32))
(tl, tr, br, bl) = ordered_corners
# 変換後の画像の幅と高さを計算
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
boardWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
boardHeight = max(int(heightA), int(heightB))
imageHeight, imageWidth, _ = image.shape
CanvasWidth, CanvasHeight = int(imageWidth * 1.2), int(
imageHeight * 1.2
)
x_offset = (CanvasWidth - boardWidth) // 2
y_offset = (CanvasHeight - boardHeight) // 2
# 変換後の座標を定義
dst_pts = np.array(
[
[x_offset, y_offset],
[x_offset + boardWidth - 1, y_offset],
[x_offset + boardWidth - 1, y_offset + boardHeight - 1],
[x_offset, y_offset + boardHeight - 1],
],
dtype="float32",
)
print(dst_pts)
# 射影変換行列を取得し、画像を補正
matrix = cv2.getPerspectiveTransform(ordered_corners, dst_pts)
warped_image = cv2.warpPerspective(
image, matrix, (CanvasWidth, CanvasHeight)
)
# デバッグ用に補正後画像を保存
cv2.imwrite("debug_warped_image.jpg", warped_image)
print("傾き補正後の画像を debug_warped_image.jpg に保存しました。")
# まず中央のボードを見つける
box = find_center_box(warped_image)
if box is None:
progress_fn(
"警告: ボードが見つからないため、向きの自動補正をスキップします。"
)
return warped_image, box, 1
print("box is found")
bx, by, bw, bh = box
h, w, _ = warped_image.shape
scale = max(bw, bh) / SCALE_STANDARD
board_img = warped_image[by : by + bh, bx : bx + bw]
print(box)
image_rotated = warped_image.copy()
if bh < bw:
board_img = cv2.rotate(board_img, cv2.ROTATE_90_CLOCKWISE)
image_rotated = cv2.rotate(warped_image, cv2.ROTATE_90_CLOCKWISE)
box = rotate_rect(box, w, h, 90)
bx, by, bw, bh = box
h, w, _ = image_rotated.shape
_, sy = find_center_seal(board_img, bw, bh)
if sy == -1:
progress_fn("ボードのシールが検出できませんでした")
return image_rotated, box, scale
print(sy, bx, by, bw, bh)
if sy < bh / 2:
return image_rotated, box, scale
else:
return (
cv2.rotate(image_rotated, cv2.ROTATE_180),
rotate_rect(box, w, h, 180),
scale,
)
def get_not_white_mask(img):
lab_patch = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l_channel = lab_patch[:, :, 0]
a_channel = lab_patch[:, :, 1]
b_channel = lab_patch[:, :, 2]
mask_l = cv2.threshold(l_channel, 170, 255, cv2.THRESH_BINARY_INV)[1]
mask_a = cv2.threshold(a_channel, 130, 255, cv2.THRESH_BINARY)[1]
mask_b = cv2.threshold(b_channel, 130, 255, cv2.THRESH_BINARY)[1]
mask_ab = cv2.bitwise_or(mask_a, mask_b)
text_mask = cv2.bitwise_and(mask_l, mask_ab)
return text_mask
# ★★★ 新しいルールベースの色判定関数(診断モード付き) ★★★
def get_suit_from_image_rules(rank_image_patch, thresholds):
if rank_image_patch is None or rank_image_patch.size == 0:
return "unknown"
text_mask = get_not_white_mask(rank_image_patch)
# マスクを使って元のカラー画像から文字部分のみを抽出
masked_char_image = cv2.bitwise_and(
rank_image_patch, rank_image_patch, mask=text_mask
)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
if IS_DEBUG:
# デバッグ用のフォルダがなければ作成
debug_dir = "debug_chars"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
# ユニークなファイル名を生成
debug_filename = os.path.join(
debug_dir, f"masked_char_{timestamp}.png"
)
# 画像を保存
cv2.imwrite(debug_filename, masked_char_image)
lab_patch = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2LAB)
avg_lab = cv2.mean(lab_patch, mask=text_mask)
if cv2.countNonZero(text_mask) < 20:
print(f" 診断: 文字ピクセルが少なすぎるため判定不可 {timestamp}")
return "unknown", avg_lab
return get_suit_from_color_rules(avg_lab, thresholds, timestamp)
def get_suit_from_color_rules(avg_lab, thresholds, timestamp=0):
L, a, b = avg_lab[0], avg_lab[1], avg_lab[2]
# --- 診断ログを出力 ---
print(f" L: {L:.1f}, a: {a:.1f}, b: {b:.1f} {timestamp}")
# ルールに基づいて判定
# ルール1: 明るさ(L)で黒を判定
if L < thresholds["L_black"]:
print(" ルール1: 明るさ(L)が低いため 'black' と判定")
return "black", avg_lab
# ルール2: a値で緑か赤系かを判断
# a < 128 が緑側, a > 128 が赤側
if a < thresholds["a_green"]: # 緑側の閾値
# if a > thresholds["a_black"] and b > thresholds["b_black"]:
# if a > thresholds["a_black"] and b < thresholds["b_black"]:
# print(" ルール6: 緑っぽいけど 'black' と判定")
# return "black", avg_lab
# elif a > thresholds["a_black2"] and b < thresholds["b_black2"]:
# print(" ルール8: 緑っぽいけど 'black' と判定2")
# return "black", avg_lab
if a + b > thresholds["ab_black"]:
print(" ルール9: a + bが高いため 'black' と判定")
return "black", avg_lab
if b - a < thresholds["ba_black"]:
print(" ルール6: b値がa値を下回っているため 'black' と判定")
return "black", avg_lab
print(" ルール : blackじゃないため 'green' と判定")
return "green", avg_lab
# if b > thresholds["b_black2"]:
# print(" ルール9: b値が高いため 'black' と判定")
# return "black", avg_lab
# if b - a > thresholds["ba_green"]:
# print(" ルール6: b値がa値を上回っているため 'green' と判定")
# return "green", avg_lab
# if b < thresholds["b_black"]:
# print(" ルール8: 緑っぽいけど 'black' と判定")
# return "black", avg_lab
# print(" ルール2: a値が低いため 'green' と判定")
# return "green", avg_lab
elif a > thresholds["a_red"]: # 赤側の閾値
# ルール3: b値で赤とオレンジを区別
# b > 128 が黄側, b < 128 が青側
if a - b > thresholds["a_b_red"]:
print(" ルール : a-bが大きいため 'red' と判定")
return "red", avg_lab
else:
print(" ルール : a-bが小さいため 'orange'と判定")
return "orange", avg_lab
# if b > thresholds["b_orange"]: # 黄色みが強ければオレンジ
# if b < thresholds["b_red"] and a > thresholds["a_orange"]:
# print(" ルール7: オレンジっぽいけど 'red' と判定")
# return "red", avg_lab
# print(" ルール3: a値が高く、b値も高いため 'orange' と判定")
# return "orange", avg_lab
# else: # それ以外は赤
# print(
# " ルール4: a値が高く、b値がそれほど高くないため 'red' と判定"
# )
# return "red", avg_lab
print(" ルール5: どのLABのルールにも一致しなかったため 'black' と判定")
return "black", avg_lab
def preprocess_img(img):
gray_region = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# --- ステップ1: カードマスクの作成 (変更なし) ---
_, card_mask = cv2.threshold(gray_region, 160, 255, cv2.THRESH_BINARY)
kernel_mask = np.ones((5, 5), np.uint8)
card_mask = cv2.dilate(card_mask, kernel_mask, iterations=3)
# cv2.imwrite(f"debug_card_mask_{player_name}.jpg", card_mask)
# --- ステップ2: Cannyエッジ検出による前処理 ---
# メディアンフィルタで元画像のノイズを軽く除去
denoised_gray = cv2.medianBlur(gray_region, 3)
thresholded = cv2.adaptiveThreshold(
denoised_gray,
255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV,
21,
7,
)
preprocessed = cv2.bitwise_and(thresholded, thresholded, mask=card_mask)
kernel_open = np.ones((3, 3), np.uint8)
preprocessed = cv2.morphologyEx(preprocessed, cv2.MORPH_OPEN, kernel_open)
return preprocessed
def filter_size(contours, scale, img):
res = []
for i, cnt in enumerate(contours):
x, y, w, h = cv2.boundingRect(cnt)
# サイズフィルタを適用
# if y < 400 and w * h > 1500 * scale * scale:
# print(f"{w}x{h} at ({x}, {y})")
if (
40 * scale < h < 95 * scale
and 25 * scale < w < 60 * scale
and 0.25 < w / h < 0.9
and 1500 * scale * scale < w * h < 4000 * scale * scale
):
pad = 10
cropped_img = img[
max(0, y - pad) : min(y + h + pad, img.shape[0]),
max(0, x - pad) : min(x + w + pad, img.shape[1]),
]
no_padding_img = img[
max(0, y) : min(y + h, img.shape[0]),
max(0, x) : min(x + w, img.shape[1]),
]
res.append(
{
"img": cropped_img,
"no_pad": no_padding_img,
"pos": (x, y),
"size": (w, h),
}
)
return res
def filter_thickness(
candidates,
scale,
):
res = []
for candidate in candidates:
no_padding_img = candidate["no_pad"]
cropped_img = candidate["img"]
text_mask = get_not_white_mask(no_padding_img)
# マスクを使って元のカラー画像から文字部分のみを抽出
masked_char_image = cv2.bitwise_and(
no_padding_img, no_padding_img, mask=text_mask
)
cropped_bin = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2GRAY)
cropped_dist = cv2.distanceTransform(cropped_bin, cv2.DIST_L2, 3)
_, max_val, _, _ = cv2.minMaxLoc(cropped_dist)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
if IS_DEBUG:
debug_dir = "debug_chars"
if not os.path.exists(debug_dir):
os.makedirs(debug_dir)
debug_dir = "debug_chars"
debug_filename = os.path.join(
debug_dir, f"dist_char_{timestamp}.png"
)
# 画像を保存
cv2.imwrite(debug_filename, cropped_dist)
print(
f" 候補 at ({candidate['pos']}) - 厚みスコア: {max_val:.2f} {timestamp}"
)
if max_val > 12.0 * scale and max_val < 100000:
# print(" -> スートと判断し除外")
continue
# else:
# print(" -> ランク候補として採用")
if cropped_img.size > 0:
candidate["thickness"] = max_val
res.append(candidate)
return res
def filter_suit(candidates, suit_templates, threshold):
filtered = []
for candidate in candidates:
is_suit = False
candidate_gray = cv2.cvtColor(candidate["img"], cv2.COLOR_BGR2GRAY)
for _, template in suit_templates.items():
resized_template = cv2.resize(
template, (candidate["size"][0], candidate["size"][1])
)
res = cv2.matchTemplate(
candidate_gray, resized_template, cv2.TM_CCOEFF_NORMED
)
_, max_val, _, _ = cv2.minMaxLoc(res)
if max_val > threshold:
is_suit = True
break
if not is_suit:
filtered.append(candidate)
return filtered
def filter_vertically(candidates, scale):
res = []
for candidate in candidates:
x, y = candidate["pos"]
is_eliminated = False
for _candidate in candidates:
_x, _y = _candidate["pos"]
if (
(
x - _x < 35 * scale
and x - _x > -35 * scale
and y - _y > 40 * scale
)
or (
x - _x < 80 * scale
and x - _x > -80 * scale
and y - _y > 90 * scale
)
or (
x - _x < 300 * scale
and x - _x > -300 * scale
and y - _y > 170 * scale
)
):
is_eliminated = True
if not is_eliminated:
res.append(candidate)
return res
def filter_uniform(candidates, threshold=20.0):
res = []
for candidate in candidates:
text_mask = get_not_white_mask(candidate["no_pad"])
if cv2.countNonZero(text_mask) > 20:
lab_patch = cv2.cvtColor(candidate["no_pad"], cv2.COLOR_BGR2LAB)
_, std_dev = cv2.meanStdDev(lab_patch, mask=text_mask)
color_variance = math.sqrt(std_dev[1][0] ** 2 + std_dev[2][0] ** 2)
# デバッグ用に標準偏差を出力
print(
f" 候補 at ({candidate['pos']}) - 色のばらつき: {color_variance:.2f}"
)
# 標準偏差が閾値より小さければ、色が均一であると判断
if color_variance < threshold:
res.append(candidate)
else:
print(" -> 絵柄と判断し、除外")
return res
def find_rank_candidates(region_image, suit_templates, player_name, scale=1):
print(scale)
if region_image is None or region_image.size == 0:
return []
preprocessed = preprocess_img(region_image)
if IS_DEBUG:
cv2.imwrite(f"debug_ocr_preprocess_{player_name}.jpg", preprocessed)
contours, _ = cv2.findContours(
preprocessed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
SUIT_FILTER_THRESHOLD = 0.6
candidates_size = filter_size(contours, scale, region_image)
candidates_thickness = filter_thickness(candidates_size, scale)
candidates_suit = filter_suit(
candidates_thickness, suit_templates, SUIT_FILTER_THRESHOLD
)
candidates_vertically = filter_vertically(candidates_suit, scale)
candidates_uniform = filter_uniform(candidates_vertically)
save_img_with_rect(
f"debug_ocr_thickness_{player_name}.jpg",
region_image,
candidates_thickness,
)
save_img_with_rect(
f"debug_ocr_candidates_{player_name}.jpg",
region_image,
candidates_size,
)
save_img_with_rect(
f"debug_filter_process_{player_name}.jpg",
region_image,
candidates_uniform,
)
print(
f"フィルタリング過程を debug_filter_process_{player_name}.jpg に保存しました。"
)
print(len(candidates_uniform))
return candidates_uniform
# ★★★ RGBで色を分析するヘルパー関数 ★★★
def get_avg_rgb_from_patch(patch):
"""画像パッチから文字部分の平均色(RGB)を計算する"""
patch_gray = cv2.cvtColor(patch, cv2.COLOR_BGR2GRAY)
_, text_mask = cv2.threshold(patch_gray, 180, 230, cv2.THRESH_BINARY_INV)
if cv2.countNonZero(text_mask) == 0:
return None
# OpenCVの平均色はBGR順なので、RGB順に並べ替えて返す
avg_bgr = cv2.mean(patch, mask=text_mask)[:3]
return (avg_bgr[2], avg_bgr[1], avg_bgr[0]) # (R, G, B)
# ★★★ 最終改善版:Cannyエッジと輪郭階層を利用したカード認識関数 ★★★
def recognize_cards(region_image, suit_templates, player_name, trocr_pipeline):
rank_candidates = find_rank_candidates(
region_image, suit_templates, player_name
)
debug_region = region_image.copy()
VALID_RANKS = [
"A",
"K",
"Q",
"J",
"10",
"9",
"8",
"7",
"6",
"5",
"4",
"3",
"2",
]
recognized_ranks = []
if rank_candidates and trocr_pipeline:
# 重複候補をマージする
# ...(今回は省略。まずは検出できるかが重要)...
candidate_pil_images = [
Image.fromarray(cv2.cvtColor(c["img"], cv2.COLOR_BGR2RGB))
for c in rank_candidates
]
ocr_results = trocr_pipeline(candidate_pil_images)
print([result[0]["generated_text"] for result in ocr_results])
# ocr_results = trocr_pipeline(candidate_pil_images, generate_kwargs=generate_kwargs_sampling)
for i, result in enumerate(ocr_results):
text = result[0]["generated_text"].upper().strip()
# TrOCRが誤認識しやすい文字を補正
if text == "1O":
text = "T"
if text == "0" or text == "O":
text = "T"
if text in VALID_RANKS:
candidate = rank_candidates[i]
# --- 診断ログを出力 ---
print(f"--- 診断中: ランク '{text}' at {candidate['pos']} ---")
color_name = get_suit_from_image_rules(candidate["img"])
print(f" -> 色判定結果: {color_name}")
if color_name in SUITS_BY_COLOR:
suit = SUITS_BY_COLOR[color_name]
card_name = f"{suit}{text}"
is_duplicate = any(
math.sqrt(
(fc["pos"][0] - candidate["pos"][0]) ** 2
+ (fc["pos"][1] - candidate["pos"][1]) ** 2
)
< 20
for fc in recognized_ranks
)
if not is_duplicate:
recognized_ranks.append(
{"name": card_name, "pos": candidate["pos"]}
)
if IS_DEBUG:
for card in recognized_ranks:
cv2.putText(
debug_region,
card["name"],
(card["pos"][0], card["pos"][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(255, 255, 0),
2,
cv2.LINE_AA,
)
cv2.imwrite(f"debug_detection_{player_name}.jpg", debug_region)
print(
f"{player_name} の検出結果を debug_detection_{player_name}.jpg に保存しました。"
)
return [c["name"] for c in recognized_ranks]
def main(image_path):
suit_templates = load_suit_templates(SUIT_TEMPLATE_PATH)
if not suit_templates:
print(
"エラー: templates/suits フォルダにスートのテンプレート画像が見つかりません。"
)
return
image = cv2.imread(image_path)
if image is None:
return
box = find_center_box(image)
if box is None:
return
bx, by, bw, bh = box
h, w, _ = image.shape
margin = 200
player_regions = {
"north": image[0:by, :],
"south": image[by + bh : h, :],
"west": image[by - margin : by + bh + margin, 0:bx],
"east": image[by - margin : by + bh + margin, bx + bw : w],
}
for player, region in player_regions.items():
if region is None or region.size == 0:
continue
if player == "north":
player_regions[player] = cv2.rotate(region, cv2.ROTATE_180)
elif player == "east":
player_regions[player] = cv2.rotate(
region, cv2.ROTATE_90_CLOCKWISE
)
elif player == "west":
player_regions[player] = cv2.rotate(
region, cv2.ROTATE_90_COUNTERCLOCKWISE
)
all_hands = {}
for player, region in player_regions.items():
cards = recognize_cards(region, suit_templates, player)
all_hands[player] = arrange_hand(cards)
print("\n--- 最終識別結果 (ルールベース色判定) ---")
for player, hand in all_hands.items():
print(f"{player.capitalize()}: {', '.join(hand)}")
print("---------------------------------------")
if __name__ == "__main__":
IMAGE_FILE_PATH = "PXL_20250611_101254508.jpg"
# if trocr_pipeline:
# main(IMAGE_FILE_PATH)
# else:
# print("TrOCRパイプラインが初期化されていないため、処理を中止します。")
# else:
# print("TrOCRパイプラインが初期化されていないため、処理を中止します。")
|