File size: 28,777 Bytes
27db1bc
 
 
 
 
 
 
 
 
 
7e908e1
 
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eaacfa
 
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a1a0e
682351e
5c07ac9
 
 
 
682351e
 
 
 
27db1bc
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08a1a0e
682351e
 
 
 
 
 
 
 
27db1bc
682351e
 
27db1bc
 
 
 
 
c352c21
27db1bc
c352c21
7e908e1
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682351e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27db1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import datetime
import math
import os

import cv2
import numpy as np
from PIL import Image

from utils import arrange_hand

# from transformers import pipeline


# # --- グローバル変数としてTrOCRパイプラインを初期化 ---
# print("TrOCRのAIモデルを読み込んでいます...(初回は数分かかります)")
# try:
#     trocr_pipeline = pipeline(
#         "image-to-text", model="microsoft/trocr-base-printed"
#     )
#     print("TrOCRの準備が完了しました。")
# except Exception as e:
#     print(f"TrOCRモデルのロード中にエラーが発生しました: {e}")
#     trocr_pipeline = None

generate_kwargs_sampling = {
    "do_sample": True,
    "temperature": 0.7,
    "top_k": 50,
    "max_length": 2,
}

SUIT_TEMPLATE_PATH = "templates/suits/"
SUITS_BY_COLOR = {"black": "S", "green": "C", "red": "H", "orange": "D"}
SCALE_STANDARD = 2032

IS_DEBUG = False


def load_suit_templates(template_path):
    templates = {}
    if not os.path.exists(template_path):
        return templates
    for filename in os.listdir(template_path):
        if filename.endswith(".png"):
            name = os.path.splitext(filename)[0]
            img = cv2.imread(
                os.path.join(template_path, filename), cv2.IMREAD_GRAYSCALE
            )
            if img is not None:
                templates[name] = img
    return templates


def get_img_with_rect(img, rects, color, thickness):
    _img = img.copy()
    for rect in rects:
        if isinstance(rect, tuple):
            x, y, w, h = rect
        else:
            (x, y), (w, h) = rect["pos"], rect["size"]
        cv2.rectangle(_img, (x, y), (x + w, y + h), color)

    return _img


def save_img_with_rect(filename, img, rects, color=(0, 255, 0), thickness=2):
    if IS_DEBUG:
        cv2.imwrite(filename, get_img_with_rect(img, rects, color, thickness))


def get_masks(hsv):
    board_candidates = [
        ((15, 200, 160), (35, 255, 245)),  # yellow
        ((100, 0, 0), (179, 60, 80)),  # black
        ((35, 200, 100), (50, 255, 160)),  # light green
        ((170, 170, 150), (179, 255, 220)),  # red
        ((160, 70, 170), (180, 120, 240)),  # pink
        ((0, 200, 160), (15, 255, 240)),  # orange
        ((90, 110, 160), (120, 210, 240)),  # blue
    ]
    for color in board_candidates:
        yield cv2.inRange(hsv, color[0], color[1])


def find_best_contour(image, is_best):
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    i = 0
    for mask in get_masks(hsv):
        kernel = np.ones((7, 7), np.uint8)
        closed_mask = cv2.morphologyEx(
            mask, cv2.MORPH_CLOSE, kernel, iterations=2
        )

        if IS_DEBUG:
            cv2.imwrite(f"debug_mask{i}.jpg", closed_mask)
        contours, _ = cv2.findContours(
            closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )
        best_contour = max(contours, key=cv2.contourArea) if contours else None
        if best_contour is not None and cv2.contourArea(best_contour) > 50000:
            b, res = is_best(best_contour)
            if b:
                return res
        i += 1
    return None


def find_board_corners(image):
    """

    画像から黄色いボードの輪郭を見つけ、その4つの角の座標を返す。

    """

    def is_best(best_contour):
        peri = cv2.arcLength(best_contour, True)
        approx = cv2.approxPolyDP(best_contour, 0.02 * peri, True)

        # 輪郭が4つの角を持つ場合、それを返す
        is_rect = len(approx) >= 4
        return is_rect, approx.reshape(-1, 2) if is_rect else None

    points = find_best_contour(image, is_best)
    # if not points:
    #     return None
    sum = points.sum(axis=1)
    diff = np.diff(points, axis=1)

    top_left = points[np.argmin(sum)]
    bottom_right = points[np.argmax(sum)]
    top_right = points[np.argmax(diff)]
    bottom_left = points[np.argmin(diff)]

    corners = np.array(
        [top_left, top_right, bottom_right, bottom_left], dtype="int32"
    )

    return corners


def order_points(pts):
    """

    4つの点を左上、右上、右下、左下の順に並べ替える。

    """
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]  # 左上
    rect[2] = pts[np.argmax(s)]  # 右下

    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]  # 右上
    rect[3] = pts[np.argmax(diff)]  # 左下
    return rect


def find_center_box(image):
    def is_best(best_contour):
        if best_contour is not None and cv2.contourArea(best_contour) > 50000:
            print(f"rect:{cv2.boundingRect(best_contour)}")
            x, y, w, h = cv2.boundingRect(best_contour)
            h_parent, w_parent, _ = image.shape
            if (w < h and (w > 0.34 * w_parent or h > 0.8 * h_parent)) or (
                w >= h and (h > 0.34 * h_parent or w > 0.8 * w_parent)
            ):
                return False, None
            return True, cv2.boundingRect(best_contour)
        return False, None

    return find_best_contour(image, is_best)


def find_center_seal(image, bw, bh):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    mask = cv2.inRange(gray, 190, 255)
    kernel = np.ones((7, 7), np.uint8)
    closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

    if IS_DEBUG:
        cv2.imwrite(f"debug_seal.jpg", closed_mask)
    contours, _ = cv2.findContours(
        closed_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
    )
    for contour in contours:
        x, y, w, h = cv2.boundingRect(contour)
        _w = min(w, h)
        _h = max(w, h)
        if (
            _w > 0.33 * bw
            and _w < 0.44 * bw
            and _h > 0.21 * bh
            and _h < 0.24 * bh
        ):
            return x, y
    return -1, -1


def rotate_rect(box, w_parent, h_parent, angle):
    x, y, w, h = box
    if angle % 360 == 0:
        return (x, y, w, h)
    elif angle % 360 == 90:
        return (h_parent - h - y, x, h, w)
    elif angle % 360 == 180:
        return (w_parent - w - x, h_parent - h - y, w, h)
    elif angle % 360 == 270:
        return (y, w_parent - w - x, h, w)


def determine_and_correct_orientation(image, progress_fn):
    """

    画像の向きを判断し、必要であれば回転させて補正した画像を返す。

    """
    progress_fn("写真の向きを自動分析中...")

    # ★★★ ステップ1: ボードの4つの角を検出し、射影変換を行う ★★★
    print("ボードの傾きを検出・補正しています...")
    corners = find_board_corners(image)
    print(corners)
    if corners is None:
        print("エラー: ボードの角を検出できませんでした。")
        warped_image = image
    else:
        # 4つの角を正しい順序に並べ替える
        ordered_corners = order_points(corners.astype(np.float32))
        (tl, tr, br, bl) = ordered_corners

        # 変換後の画像の幅と高さを計算
        widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
        widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
        boardWidth = max(int(widthA), int(widthB))

        heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
        heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
        boardHeight = max(int(heightA), int(heightB))

        imageHeight, imageWidth, _ = image.shape
        CanvasWidth, CanvasHeight = int(imageWidth * 1.2), int(
            imageHeight * 1.2
        )

        x_offset = (CanvasWidth - boardWidth) // 2
        y_offset = (CanvasHeight - boardHeight) // 2

        # 変換後の座標を定義
        dst_pts = np.array(
            [
                [x_offset, y_offset],
                [x_offset + boardWidth - 1, y_offset],
                [x_offset + boardWidth - 1, y_offset + boardHeight - 1],
                [x_offset, y_offset + boardHeight - 1],
            ],
            dtype="float32",
        )
        print(dst_pts)

        # 射影変換行列を取得し、画像を補正
        matrix = cv2.getPerspectiveTransform(ordered_corners, dst_pts)
        warped_image = cv2.warpPerspective(
            image, matrix, (CanvasWidth, CanvasHeight)
        )

    # デバッグ用に補正後画像を保存
    cv2.imwrite("debug_warped_image.jpg", warped_image)
    print("傾き補正後の画像を debug_warped_image.jpg に保存しました。")

    # まず中央のボードを見つける
    box = find_center_box(warped_image)
    if box is None:
        progress_fn(
            "警告: ボードが見つからないため、向きの自動補正をスキップします。"
        )
        return warped_image, box, 1
    print("box is found")

    bx, by, bw, bh = box
    h, w, _ = warped_image.shape
    scale = max(bw, bh) / SCALE_STANDARD
    board_img = warped_image[by : by + bh, bx : bx + bw]
    print(box)

    image_rotated = warped_image.copy()
    if bh < bw:
        board_img = cv2.rotate(board_img, cv2.ROTATE_90_CLOCKWISE)
        image_rotated = cv2.rotate(warped_image, cv2.ROTATE_90_CLOCKWISE)
        box = rotate_rect(box, w, h, 90)
        bx, by, bw, bh = box
        h, w, _ = image_rotated.shape
    _, sy = find_center_seal(board_img, bw, bh)
    if sy == -1:
        progress_fn("ボードのシールが検出できませんでした")
        return image_rotated, box, scale
    print(sy, bx, by, bw, bh)
    if sy < bh / 2:
        return image_rotated, box, scale
    else:
        return (
            cv2.rotate(image_rotated, cv2.ROTATE_180),
            rotate_rect(box, w, h, 180),
            scale,
        )


def get_not_white_mask(img):

    lab_patch = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
    l_channel = lab_patch[:, :, 0]
    a_channel = lab_patch[:, :, 1]
    b_channel = lab_patch[:, :, 2]
    mask_l = cv2.threshold(l_channel, 170, 255, cv2.THRESH_BINARY_INV)[1]
    mask_a = cv2.threshold(a_channel, 130, 255, cv2.THRESH_BINARY)[1]
    mask_b = cv2.threshold(b_channel, 130, 255, cv2.THRESH_BINARY)[1]
    mask_ab = cv2.bitwise_or(mask_a, mask_b)
    text_mask = cv2.bitwise_and(mask_l, mask_ab)
    return text_mask


# ★★★ 新しいルールベースの色判定関数(診断モード付き) ★★★
def get_suit_from_image_rules(rank_image_patch, thresholds):
    if rank_image_patch is None or rank_image_patch.size == 0:
        return "unknown"

    text_mask = get_not_white_mask(rank_image_patch)

    # マスクを使って元のカラー画像から文字部分のみを抽出
    masked_char_image = cv2.bitwise_and(
        rank_image_patch, rank_image_patch, mask=text_mask
    )

    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    if IS_DEBUG:
        # デバッグ用のフォルダがなければ作成
        debug_dir = "debug_chars"
        if not os.path.exists(debug_dir):
            os.makedirs(debug_dir)
        # ユニークなファイル名を生成
        debug_filename = os.path.join(
            debug_dir, f"masked_char_{timestamp}.png"
        )

        # 画像を保存
        cv2.imwrite(debug_filename, masked_char_image)

    lab_patch = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2LAB)
    avg_lab = cv2.mean(lab_patch, mask=text_mask)
    if cv2.countNonZero(text_mask) < 20:
        print(f"    診断: 文字ピクセルが少なすぎるため判定不可    {timestamp}")
        return "unknown", avg_lab
    return get_suit_from_color_rules(avg_lab, thresholds, timestamp)


def get_suit_from_color_rules(avg_lab, thresholds, timestamp=0):
    L, a, b = avg_lab[0], avg_lab[1], avg_lab[2]

    # --- 診断ログを出力 ---
    print(f"    L: {L:.1f}, a: {a:.1f}, b: {b:.1f}     {timestamp}")

    # ルールに基づいて判定
    # ルール1: 明るさ(L)で黒を判定
    if L < thresholds["L_black"]:
        print("    ルール1: 明るさ(L)が低いため 'black' と判定")
        return "black", avg_lab

    # ルール2: a値で緑か赤系かを判断
    # a < 128 が緑側, a > 128 が赤側
    if a < thresholds["a_green"]:  # 緑側の閾値
        # if a > thresholds["a_black"] and b > thresholds["b_black"]:
        # if a > thresholds["a_black"] and b < thresholds["b_black"]:
        #     print("    ルール6: 緑っぽいけど 'black' と判定")
        #     return "black", avg_lab
        # elif a > thresholds["a_black2"] and b < thresholds["b_black2"]:
        #     print("    ルール8: 緑っぽいけど 'black' と判定2")
        #     return "black", avg_lab
        if a + b > thresholds["ab_black"]:
            print("    ルール9: a + bが高いため 'black' と判定")
            return "black", avg_lab
        if b - a < thresholds["ba_black"]:
            print("    ルール6: b値がa値を下回っているため 'black' と判定")
            return "black", avg_lab
        print("    ルール : blackじゃないため 'green' と判定")
        return "green", avg_lab
        # if b > thresholds["b_black2"]:
        #     print("    ルール9: b値が高いため 'black' と判定")
        #     return "black", avg_lab
        # if b - a > thresholds["ba_green"]:
        #     print("    ルール6: b値がa値を上回っているため 'green' と判定")
        #     return "green", avg_lab
        # if b < thresholds["b_black"]:
        #     print("    ルール8: 緑っぽいけど 'black' と判定")
        #     return "black", avg_lab

        # print("    ルール2: a値が低いため 'green' と判定")
        # return "green", avg_lab
    elif a > thresholds["a_red"]:  # 赤側の閾値
        # ルール3: b値で赤とオレンジを区別
        # b > 128 が黄側, b < 128 が青側
        if a - b > thresholds["a_b_red"]:
            print("    ルール : a-bが大きいため 'red' と判定")
            return "red", avg_lab
        else:
            print("    ルール : a-bが小さいため 'orange'と判定")
            return "orange", avg_lab
        # if b > thresholds["b_orange"]:  # 黄色みが強ければオレンジ
        #     if b < thresholds["b_red"] and a > thresholds["a_orange"]:
        #         print("    ルール7: オレンジっぽいけど 'red' と判定")
        #         return "red", avg_lab
        #     print("    ルール3: a値が高く、b値も高いため 'orange' と判定")
        #     return "orange", avg_lab
        # else:  # それ以外は赤
        #     print(
        #         "    ルール4: a値が高く、b値がそれほど高くないため 'red' と判定"
        #     )
        #     return "red", avg_lab

    print("    ルール5: どのLABのルールにも一致しなかったため 'black' と判定")
    return "black", avg_lab


def preprocess_img(img):
    gray_region = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # --- ステップ1: カードマスクの作成 (変更なし) ---
    _, card_mask = cv2.threshold(gray_region, 160, 255, cv2.THRESH_BINARY)
    kernel_mask = np.ones((5, 5), np.uint8)
    card_mask = cv2.dilate(card_mask, kernel_mask, iterations=3)
    # cv2.imwrite(f"debug_card_mask_{player_name}.jpg", card_mask)

    # --- ステップ2: Cannyエッジ検出による前処理 ---
    # メディアンフィルタで元画像のノイズを軽く除去
    denoised_gray = cv2.medianBlur(gray_region, 3)
    thresholded = cv2.adaptiveThreshold(
        denoised_gray,
        255,
        cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
        cv2.THRESH_BINARY_INV,
        21,
        7,
    )
    preprocessed = cv2.bitwise_and(thresholded, thresholded, mask=card_mask)
    kernel_open = np.ones((3, 3), np.uint8)
    preprocessed = cv2.morphologyEx(preprocessed, cv2.MORPH_OPEN, kernel_open)
    return preprocessed


def filter_size(contours, scale, img):
    res = []
    for i, cnt in enumerate(contours):
        x, y, w, h = cv2.boundingRect(cnt)
        # サイズフィルタを適用
        # if y < 400 and w * h > 1500 * scale * scale:
        #     print(f"{w}x{h} at ({x}, {y})")
        if (
            40 * scale < h < 95 * scale
            and 25 * scale < w < 60 * scale
            and 0.25 < w / h < 0.9
            and 1500 * scale * scale < w * h < 4000 * scale * scale
        ):
            pad = 10
            cropped_img = img[
                max(0, y - pad) : min(y + h + pad, img.shape[0]),
                max(0, x - pad) : min(x + w + pad, img.shape[1]),
            ]
            no_padding_img = img[
                max(0, y) : min(y + h, img.shape[0]),
                max(0, x) : min(x + w, img.shape[1]),
            ]
            res.append(
                {
                    "img": cropped_img,
                    "no_pad": no_padding_img,
                    "pos": (x, y),
                    "size": (w, h),
                }
            )
    return res


def filter_thickness(

    candidates,

    scale,

):
    res = []
    for candidate in candidates:
        no_padding_img = candidate["no_pad"]
        cropped_img = candidate["img"]

        text_mask = get_not_white_mask(no_padding_img)

        # マスクを使って元のカラー画像から文字部分のみを抽出
        masked_char_image = cv2.bitwise_and(
            no_padding_img, no_padding_img, mask=text_mask
        )
        cropped_bin = cv2.cvtColor(masked_char_image, cv2.COLOR_BGR2GRAY)
        cropped_dist = cv2.distanceTransform(cropped_bin, cv2.DIST_L2, 3)
        _, max_val, _, _ = cv2.minMaxLoc(cropped_dist)

        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
        if IS_DEBUG:
            debug_dir = "debug_chars"
            if not os.path.exists(debug_dir):
                os.makedirs(debug_dir)
            debug_dir = "debug_chars"
            debug_filename = os.path.join(
                debug_dir, f"dist_char_{timestamp}.png"
            )

            # 画像を保存
            cv2.imwrite(debug_filename, cropped_dist)

        print(
            f"    候補 at ({candidate['pos']}) - 厚みスコア: {max_val:.2f}    {timestamp}"
        )
        if max_val > 12.0 * scale and max_val < 100000:
            # print("    -> スートと判断し除外")
            continue
        # else:
        # print("    -> ランク候補として採用")

        if cropped_img.size > 0:
            candidate["thickness"] = max_val
            res.append(candidate)
    return res


def filter_suit(candidates, suit_templates, threshold):
    filtered = []
    for candidate in candidates:
        is_suit = False

        candidate_gray = cv2.cvtColor(candidate["img"], cv2.COLOR_BGR2GRAY)

        for _, template in suit_templates.items():
            resized_template = cv2.resize(
                template, (candidate["size"][0], candidate["size"][1])
            )
            res = cv2.matchTemplate(
                candidate_gray, resized_template, cv2.TM_CCOEFF_NORMED
            )
            _, max_val, _, _ = cv2.minMaxLoc(res)

            if max_val > threshold:
                is_suit = True
                break
        if not is_suit:
            filtered.append(candidate)
    return filtered


def filter_vertically(candidates, scale):
    res = []
    for candidate in candidates:
        x, y = candidate["pos"]
        is_eliminated = False
        for _candidate in candidates:
            _x, _y = _candidate["pos"]

            if (
                (
                    x - _x < 35 * scale
                    and x - _x > -35 * scale
                    and y - _y > 40 * scale
                )
                or (
                    x - _x < 80 * scale
                    and x - _x > -80 * scale
                    and y - _y > 90 * scale
                )
                or (
                    x - _x < 300 * scale
                    and x - _x > -300 * scale
                    and y - _y > 170 * scale
                )
            ):
                is_eliminated = True
        if not is_eliminated:
            res.append(candidate)
    return res


def filter_uniform(candidates, threshold=20.0):
    res = []
    for candidate in candidates:
        text_mask = get_not_white_mask(candidate["no_pad"])
        if cv2.countNonZero(text_mask) > 20:
            lab_patch = cv2.cvtColor(candidate["no_pad"], cv2.COLOR_BGR2LAB)
            _, std_dev = cv2.meanStdDev(lab_patch, mask=text_mask)

            color_variance = math.sqrt(std_dev[1][0] ** 2 + std_dev[2][0] ** 2)

            # デバッグ用に標準偏差を出力
            print(
                f"    候補 at ({candidate['pos']}) - 色のばらつき: {color_variance:.2f}"
            )

            # 標準偏差が閾値より小さければ、色が均一であると判断
            if color_variance < threshold:
                res.append(candidate)
            else:
                print("    -> 絵柄と判断し、除外")
    return res


def find_rank_candidates(region_image, suit_templates, player_name, scale=1):
    print(scale)
    if region_image is None or region_image.size == 0:
        return []

    preprocessed = preprocess_img(region_image)
    if IS_DEBUG:
        cv2.imwrite(f"debug_ocr_preprocess_{player_name}.jpg", preprocessed)

    contours, _ = cv2.findContours(
        preprocessed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
    )

    SUIT_FILTER_THRESHOLD = 0.6

    candidates_size = filter_size(contours, scale, region_image)
    candidates_thickness = filter_thickness(candidates_size, scale)
    candidates_suit = filter_suit(
        candidates_thickness, suit_templates, SUIT_FILTER_THRESHOLD
    )
    candidates_vertically = filter_vertically(candidates_suit, scale)
    candidates_uniform = filter_uniform(candidates_vertically)

    save_img_with_rect(
        f"debug_ocr_thickness_{player_name}.jpg",
        region_image,
        candidates_thickness,
    )
    save_img_with_rect(
        f"debug_ocr_candidates_{player_name}.jpg",
        region_image,
        candidates_size,
    )
    save_img_with_rect(
        f"debug_filter_process_{player_name}.jpg",
        region_image,
        candidates_uniform,
    )

    print(
        f"フィルタリング過程を debug_filter_process_{player_name}.jpg に保存しました。"
    )
    print(len(candidates_uniform))
    return candidates_uniform


# ★★★ RGBで色を分析するヘルパー関数 ★★★
def get_avg_rgb_from_patch(patch):
    """画像パッチから文字部分の平均色(RGB)を計算する"""
    patch_gray = cv2.cvtColor(patch, cv2.COLOR_BGR2GRAY)
    _, text_mask = cv2.threshold(patch_gray, 180, 230, cv2.THRESH_BINARY_INV)
    if cv2.countNonZero(text_mask) == 0:
        return None
    # OpenCVの平均色はBGR順なので、RGB順に並べ替えて返す
    avg_bgr = cv2.mean(patch, mask=text_mask)[:3]
    return (avg_bgr[2], avg_bgr[1], avg_bgr[0])  # (R, G, B)


# ★★★ 最終改善版:Cannyエッジと輪郭階層を利用したカード認識関数 ★★★
def recognize_cards(region_image, suit_templates, player_name, trocr_pipeline):
    rank_candidates = find_rank_candidates(
        region_image, suit_templates, player_name
    )
    debug_region = region_image.copy()

    VALID_RANKS = [
        "A",
        "K",
        "Q",
        "J",
        "10",
        "9",
        "8",
        "7",
        "6",
        "5",
        "4",
        "3",
        "2",
    ]

    recognized_ranks = []
    if rank_candidates and trocr_pipeline:
        # 重複候補をマージする
        # ...(今回は省略。まずは検出できるかが重要)...

        candidate_pil_images = [
            Image.fromarray(cv2.cvtColor(c["img"], cv2.COLOR_BGR2RGB))
            for c in rank_candidates
        ]
        ocr_results = trocr_pipeline(candidate_pil_images)
        print([result[0]["generated_text"] for result in ocr_results])
        # ocr_results = trocr_pipeline(candidate_pil_images, generate_kwargs=generate_kwargs_sampling)

        for i, result in enumerate(ocr_results):
            text = result[0]["generated_text"].upper().strip()
            # TrOCRが誤認識しやすい文字を補正
            if text == "1O":
                text = "T"
            if text == "0" or text == "O":
                text = "T"

            if text in VALID_RANKS:
                candidate = rank_candidates[i]

                # --- 診断ログを出力 ---
                print(f"--- 診断中: ランク '{text}' at {candidate['pos']} ---")
                color_name = get_suit_from_image_rules(candidate["img"])
                print(f" -> 色判定結果: {color_name}")

                if color_name in SUITS_BY_COLOR:
                    suit = SUITS_BY_COLOR[color_name]
                    card_name = f"{suit}{text}"
                    is_duplicate = any(
                        math.sqrt(
                            (fc["pos"][0] - candidate["pos"][0]) ** 2
                            + (fc["pos"][1] - candidate["pos"][1]) ** 2
                        )
                        < 20
                        for fc in recognized_ranks
                    )
                    if not is_duplicate:
                        recognized_ranks.append(
                            {"name": card_name, "pos": candidate["pos"]}
                        )

    if IS_DEBUG:
        for card in recognized_ranks:
            cv2.putText(
                debug_region,
                card["name"],
                (card["pos"][0], card["pos"][1] - 10),
                cv2.FONT_HERSHEY_SIMPLEX,
                1.0,
                (255, 255, 0),
                2,
                cv2.LINE_AA,
            )
        cv2.imwrite(f"debug_detection_{player_name}.jpg", debug_region)
        print(
            f"{player_name} の検出結果を debug_detection_{player_name}.jpg に保存しました。"
        )
    return [c["name"] for c in recognized_ranks]


def main(image_path):
    suit_templates = load_suit_templates(SUIT_TEMPLATE_PATH)
    if not suit_templates:
        print(
            "エラー: templates/suits フォルダにスートのテンプレート画像が見つかりません。"
        )
        return

    image = cv2.imread(image_path)
    if image is None:
        return

    box = find_center_box(image)
    if box is None:
        return
    bx, by, bw, bh = box

    h, w, _ = image.shape
    margin = 200
    player_regions = {
        "north": image[0:by, :],
        "south": image[by + bh : h, :],
        "west": image[by - margin : by + bh + margin, 0:bx],
        "east": image[by - margin : by + bh + margin, bx + bw : w],
    }

    for player, region in player_regions.items():
        if region is None or region.size == 0:
            continue
        if player == "north":
            player_regions[player] = cv2.rotate(region, cv2.ROTATE_180)
        elif player == "east":
            player_regions[player] = cv2.rotate(
                region, cv2.ROTATE_90_CLOCKWISE
            )
        elif player == "west":
            player_regions[player] = cv2.rotate(
                region, cv2.ROTATE_90_COUNTERCLOCKWISE
            )

    all_hands = {}
    for player, region in player_regions.items():
        cards = recognize_cards(region, suit_templates, player)
        all_hands[player] = arrange_hand(cards)

    print("\n--- 最終識別結果 (ルールベース色判定) ---")
    for player, hand in all_hands.items():
        print(f"{player.capitalize()}: {', '.join(hand)}")
    print("---------------------------------------")


if __name__ == "__main__":
    IMAGE_FILE_PATH = "PXL_20250611_101254508.jpg"
    # if trocr_pipeline:
    #     main(IMAGE_FILE_PATH)
    # else:
    #     print("TrOCRパイプラインが初期化されていないため、処理を中止します。")
    # else:
    #     print("TrOCRパイプラインが初期化されていないため、処理を中止します。")