github-actions commited on
Commit
d704d9e
Β·
1 Parent(s): 32503a2

Sync updates from source repository

Browse files
Files changed (4) hide show
  1. README.md +7 -8
  2. app.py +62 -100
  3. query.py +1 -1
  4. requirements.txt +1 -1
README.md CHANGED
@@ -1,14 +1,13 @@
1
  ---
2
  title: Ask Anabel
3
- emoji: πŸ“ˆ
4
- colorFrom: indigo
5
- colorTo: green
6
- sdk: streamlit
7
- sdk_version: 1.32.2
8
  app_file: app.py
9
- pinned: false
10
  license: apache-2.0
11
- short_description: Ask SEL questions based on the works of Anabel Jensen
 
12
  ---
13
-
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Ask Anabel
3
+ emoji: πŸš€
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 4.38.1
8
  app_file: app.py
 
9
  license: apache-2.0
10
+ pinned: false
11
+ short_description: Ask Anabel about Social Emotional Learning (EQ)
12
  ---
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,117 +1,79 @@
1
  from omegaconf import OmegaConf
2
  from query import VectaraQuery
3
  import os
4
-
5
- import streamlit as st
6
- from streamlit_pills import pills
7
-
8
- from PIL import Image
9
-
10
- max_examples = 6
11
 
12
  def isTrue(x) -> bool:
13
  if isinstance(x, bool):
14
  return x
15
  return x.strip().lower() == 'true'
16
 
17
- def launch_bot():
18
- def generate_response(question):
19
- response = vq.submit_query(question)
20
- return response
21
-
22
- def generate_streaming_response(question):
23
- response = vq.submit_query_streaming(question)
24
- return response
25
-
26
- def show_example_questions():
27
- if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
28
- selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
29
- if selected_example:
30
- st.session_state.ex_prompt = selected_example
31
- st.session_state.first_turn = False
32
- return True
33
- return False
34
-
35
- if 'cfg' not in st.session_state:
36
- corpus_keys = str(os.environ['corpus_keys']).split(',')
37
- cfg = OmegaConf.create({
38
- 'corpus_keys': corpus_keys,
39
- 'api_key': str(os.environ['api_key']),
40
- 'title': os.environ['title'],
41
- 'source_data_desc': os.environ['source_data_desc'],
42
- 'streaming': isTrue(os.environ.get('streaming', False)),
43
- 'prompt_name': os.environ.get('prompt_name', None),
44
- 'examples': os.environ.get('examples', None)
45
- })
46
- st.session_state.cfg = cfg
47
- st.session_state.ex_prompt = None
48
- st.session_state.first_turn = True
49
- example_messages = [example.strip() for example in cfg.examples.split(",")]
50
- st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
51
-
52
- st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
53
-
54
- cfg = st.session_state.cfg
55
- vq = st.session_state.vq
56
- st.set_page_config(page_title=cfg.title, layout="wide")
57
 
58
- # left side content
59
- with st.sidebar:
60
- image = Image.open('Vectara-logo.png')
61
- st.image(image, width=175)
62
- st.markdown(f"## About\n\n"
63
- f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
64
 
65
- st.markdown("---")
66
- st.markdown(
67
- "## How this works?\n"
68
- "This app was built with [Vectara](https://vectara.com).\n"
69
- "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
70
- "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
71
- )
72
- st.markdown("---")
73
 
 
 
 
 
 
 
 
 
 
74
 
75
- st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
76
 
77
- if "messages" not in st.session_state.keys():
78
- st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
79
-
80
- # Display chat messages
81
- for message in st.session_state.messages:
82
- with st.chat_message(message["role"]):
83
- st.write(message["content"])
 
 
 
 
 
 
 
 
 
 
 
84
 
85
- example_container = st.empty()
86
- with example_container:
87
- if show_example_questions():
88
- example_container.empty()
89
- st.rerun()
 
 
90
 
91
- # select prompt from example question or user provided input
92
- if st.session_state.ex_prompt:
93
- prompt = st.session_state.ex_prompt
94
- else:
95
- prompt = st.chat_input()
96
- if prompt:
97
- st.session_state.messages.append({"role": "user", "content": prompt})
98
- with st.chat_message("user"):
99
- st.write(prompt)
100
- st.session_state.ex_prompt = None
101
-
102
- # Generate a new response if last message is not from assistant
103
- if st.session_state.messages[-1]["role"] != "assistant":
104
- with st.chat_message("assistant"):
105
- if cfg.streaming:
106
- stream = generate_streaming_response(prompt)
107
- response = st.write_stream(stream)
108
- else:
109
- with st.spinner("Thinking..."):
110
- response = generate_response(prompt)
111
- st.write(response)
112
- message = {"role": "assistant", "content": response}
113
- st.session_state.messages.append(message)
114
- st.rerun()
115
-
116
  if __name__ == "__main__":
117
- launch_bot()
 
1
  from omegaconf import OmegaConf
2
  from query import VectaraQuery
3
  import os
4
+ import gradio as gr
 
 
 
 
 
 
5
 
6
  def isTrue(x) -> bool:
7
  if isinstance(x, bool):
8
  return x
9
  return x.strip().lower() == 'true'
10
 
11
+ corpus_keys = str(os.environ['corpus_keys']).split(',')
12
+ cfg = OmegaConf.create({
13
+ 'corpus_keys': corpus_keys,
14
+ 'api_key': str(os.environ['api_key']),
15
+ 'title': os.environ['title'],
16
+ 'source_data_desc': os.environ['source_data_desc'],
17
+ 'streaming': isTrue(os.environ.get('streaming', False)),
18
+ 'prompt_name': os.environ.get('prompt_name', None),
19
+ 'examples': os.environ.get('examples', None)
20
+ })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
 
 
 
 
 
23
 
24
+ def respond(message, history):
25
+ if cfg.streaming:
26
+ # Call stream response and stream output
27
+ stream = vq.submit_query_streaming(message)
 
 
 
 
28
 
29
+
30
+ outputs = ""
31
+ for output in stream:
32
+ outputs += output
33
+ yield outputs
34
+ else:
35
+ # Call non-stream response and return message output
36
+ response = vq.submit_query(message)
37
+ yield response
38
 
39
+ heading_html = f'''
40
+ <table>
41
+ <tr>
42
+ <td style="width: 80%; text-align: left; vertical-align: middle;"> <h1>Vectara AI Assistant: {cfg.title}</h1> </td>
43
+ <td style="width: 20%; text-align: right; vertical-align: middle;"> <img src="https://github.com/david-oplatka/chatbot-streamlit/blob/main/Vectara-logo.png?raw=true"> </td>
44
+ </tr>
45
+ <tr>
46
+ <td colspan="2" style="font-size: 16px;">This demo uses Retrieval Augmented Generation from <a href="https://vectara.com/">Vectara</a> to ask questions about {cfg.source_data_desc}.</td>
47
+ </tr>
48
+ </table>
49
+ '''
50
 
51
+ bot_css = """
52
+ table {
53
+ border: none;
54
+ width: 100%;
55
+ table-layout: fixed;
56
+ border-collapse: separate;
57
+ }
58
+ td {
59
+ vertical-align: middle;
60
+ border: none;
61
+ }
62
+ img {
63
+ width: 75%;
64
+ }
65
+ h1 {
66
+ font-size: 2em; /* Adjust the size as needed */
67
+ }
68
+ """
69
 
70
+ if cfg.examples:
71
+ app_examples = [example.strip() for example in cfg.examples.split(",")]
72
+ else:
73
+ app_examples = None
74
+
75
+ demo = gr.ChatInterface(respond, description = heading_html, css = bot_css,
76
+ chatbot = gr.Chatbot(value = [[None, "How may I help you?"]]), examples = app_examples, cache_examples = False)
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  if __name__ == "__main__":
79
+ demo.launch()
query.py CHANGED
@@ -125,4 +125,4 @@ class VectaraQuery():
125
  chunks.append(chunk)
126
  yield chunk
127
 
128
- return ''.join(chunks)
 
125
  chunks.append(chunk)
126
  yield chunk
127
 
128
+ return ''.join(chunks)
requirements.txt CHANGED
@@ -1,5 +1,5 @@
 
1
  requests_to_curl==1.1.0
2
  toml==0.10.2
3
  omegaconf==2.3.0
4
  syrupy==4.0.8
5
- streamlit_pills==0.3.0
 
1
+ gradio==3.40.0
2
  requests_to_curl==1.1.0
3
  toml==0.10.2
4
  omegaconf==2.3.0
5
  syrupy==4.0.8