import os import csv import json import logging import gradio as gr from tqdm import tqdm import nltk from nltk.tokenize import word_tokenize from nltk.corpus import wordnet from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from huggingface_hub import HfApi, Repository, login from datasets import Dataset import pandas as pd from datetime import datetime import secrets nltk.download('all') log_dir = "logs" os.makedirs(log_dir, exist_ok=True) logging.basicConfig( filename=os.path.join(log_dir, f"app_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"), level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) error_dir = "errors" os.makedirs(error_dir, exist_ok=True) error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log") def log_error(error_msg): with open(error_log_file, 'a') as f: f.write(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - ERROR - {error_msg}\n") try: api = HfApi() api.upload_file( path_or_fileobj=error_log_file, path_in_repo=f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log", repo_id="katsukiai/errors", repo_type="dataset" ) except Exception as e: logging.error(f"Failed to upload error log: {str(e)}") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct") model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct") meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large") HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16)) login(token=HF_TOKEN) dataset_dir = "dataset" os.makedirs(dataset_dir, exist_ok=True) csv_file = os.path.join(dataset_dir, "deepfocus_data.csv") def process_text_to_csv(input_text): try: tokens = word_tokenize(input_text.lower()) words = list(set(tokens)) data = [] for word in tqdm(words, desc="Processing words"): meanings = [] synsets = wordnet.synsets(word) if synsets: meanings = [syn.definition() for syn in synsets[:3]] else: try: generated_meaning = meaning_generator(f"Define the word '{word}'", max_length=100)[0]['generated_text'] meanings.append(generated_meaning) except Exception as e: log_error(f"Meaning generation failed for '{word}': {str(e)}") data.append({"tokenizer": tokens, "words": word, "meaning": meanings}) with open(csv_file, 'w', newline='', encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"]) writer.writeheader() writer.writerows(data) logging.info(f"Dataset saved to {csv_file}") return data except Exception as e: log_error(f"Error in process_text_to_csv: {str(e)}") raise def upload_to_huggingface(): try: dataset = Dataset.from_csv(csv_file) dataset.push_to_hub("katsukiai/DeepFocus-X3", token=HF_TOKEN) logging.info("Dataset uploaded to Hugging Face") except Exception as e: log_error(f"Error uploading to Hugging Face: {str(e)}") raise def generate_output(input_text): try: data = process_text_to_csv(input_text) upload_to_huggingface() return json.dumps(data, indent=2) except Exception as e: log_error(f"Error in generate_output: {str(e)}") return f"Error: {str(e)}" def view_logs(): try: log_files = os.listdir(log_dir) log_content = "" for log_file in log_files: with open(os.path.join(log_dir, log_file), 'r') as f: log_content += f"\n\n--- {log_file} ---\n\n{f.read()}" return log_content except Exception as e: log_error(f"Error in view_logs: {str(e)}") return f"Error: {str(e)}" with gr.Blocks(title="DeepFocus-X3") as demo: gr.Markdown("# DeepFocus-X3") with gr.Tabs(): with gr.TabItem("About"): gr.Markdown(""" ## About DeepFocus-X3 This application processes text, tokenizes it, extracts unique words, generates meanings, and uploads the dataset to Hugging Face. - Uses NLTK for tokenization and WordNet for meanings. - Leverages DeepSeek AI for long text processing and Google FLAN-T5 for meaning generation. - Logs all activities and errors, with error logs uploaded to Hugging Face. """) with gr.TabItem("Generate all"): input_text = gr.Textbox(label="Input Text", lines=10) output_json = gr.Textbox(label="Output JSON", lines=10) generate_btn = gr.Button("Generate and Upload") generate_btn.click(fn=generate_output, inputs=input_text, outputs=output_json) with gr.TabItem("Logs"): gr.Markdown("## Report using Logs") log_output = gr.Textbox(label="Log Content", lines=20) view_logs_btn = gr.Button("View Logs") view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output) demo.launch()