Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,95 +3,115 @@ import logging
|
|
3 |
import os
|
4 |
import datetime
|
5 |
import gradio as gr
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
|
|
|
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def text_to_json(text):
|
14 |
-
lines = text.strip().split(
|
15 |
data = [{"text": line} for line in lines]
|
16 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
17 |
filename = f"output_{timestamp}.json"
|
18 |
-
|
|
|
19 |
json.dump(data, f, indent=4)
|
|
|
|
|
20 |
return filename
|
21 |
|
22 |
-
#
|
23 |
def generate_and_upload(text):
|
24 |
try:
|
25 |
-
if not text:
|
26 |
raise ValueError("Text input is empty.")
|
27 |
|
28 |
logger.info(f"Received text input: {text}")
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
logger.info(f"
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
raise ValueError("Hugging Face API token not found. Please set HUGGINGFACE_API_TOKEN environment variable.")
|
39 |
-
|
40 |
-
# Upload
|
|
|
41 |
repo_id = "katsukiai/DeepFocus-X3"
|
42 |
upload_info = api.upload_file(
|
43 |
path_or_fileobj=json_file,
|
44 |
-
path_in_repo="convert/
|
45 |
repo_id=repo_id,
|
46 |
repo_type="dataset",
|
47 |
token=token
|
48 |
)
|
49 |
-
|
50 |
-
|
51 |
-
return message, json_file
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Error uploading file: {e}")
|
54 |
-
return f"Error: {e}", None
|
55 |
|
|
|
|
|
|
|
56 |
|
|
|
57 |
|
|
|
|
|
|
|
58 |
|
59 |
-
# Create
|
60 |
with gr.Blocks() as demo:
|
61 |
with gr.Tab("About"):
|
62 |
gr.Markdown("""
|
63 |
-
# Text
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
2. Go to your profile settings.
|
78 |
-
3. Generate a new token or use an existing one.
|
79 |
-
4. Set the token as an environment variable named `HUGGINGFACE_API_TOKEN`.
|
80 |
-
|
81 |
-
## Setting Environment Variable
|
82 |
-
- **Windows**: Set it in System Properties > Advanced > Environment Variables.
|
83 |
-
- **macOS/Linux**: Add `export HUGGINGFACE_API_TOKEN=your_token` to your shell profile (e.g., `.bashrc`, `.zshrc`).
|
84 |
""")
|
85 |
-
|
86 |
with gr.Tab("Generate"):
|
87 |
text_input = gr.Textbox(label="Enter text")
|
88 |
output_message = gr.Textbox(label="Status message")
|
89 |
-
json_file_downloader = gr.File(label="Download JSON", interactive=
|
90 |
generate_button = gr.Button("Generate and Upload")
|
91 |
-
generate_button.click(fn=generate_and_upload, inputs=text_input, outputs=[output_message, json_file_downloader])
|
92 |
-
|
93 |
-
# Launch the Gradio app
|
94 |
-
demo.launch()
|
95 |
-
|
96 |
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
3 |
import os
|
4 |
import datetime
|
5 |
import gradio as gr
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
from huggingface_hub import HfApi
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# Load DeepSeek-V3 model and tokenizer for CPU
|
15 |
+
MODEL_NAME = "deepseek-ai/deepseek-v3"
|
16 |
+
logger.info(f"Loading model: {MODEL_NAME} (CPU mode)")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32, device_map="cpu")
|
19 |
+
|
20 |
+
# Function to process text with DeepSeek-V3
|
21 |
+
def process_text_with_model(text):
|
22 |
+
logger.info("Processing text with DeepSeek-V3 model (CPU)...")
|
23 |
+
inputs = tokenizer(text, return_tensors="pt").to("cpu") # Ensures CPU usage
|
24 |
+
outputs = model.generate(**inputs, max_length=200)
|
25 |
+
processed_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return processed_text
|
27 |
+
|
28 |
+
# Function to convert text to JSON
|
29 |
def text_to_json(text):
|
30 |
+
lines = text.strip().split("\n")
|
31 |
data = [{"text": line} for line in lines]
|
32 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
33 |
filename = f"output_{timestamp}.json"
|
34 |
+
|
35 |
+
with open(filename, "w") as f:
|
36 |
json.dump(data, f, indent=4)
|
37 |
+
|
38 |
+
logger.info(f"JSON file created: {filename}")
|
39 |
return filename
|
40 |
|
41 |
+
# Function to generate JSON and upload to Hugging Face
|
42 |
def generate_and_upload(text):
|
43 |
try:
|
44 |
+
if not text.strip():
|
45 |
raise ValueError("Text input is empty.")
|
46 |
|
47 |
logger.info(f"Received text input: {text}")
|
48 |
+
|
49 |
+
# Process text with DeepSeek-V3
|
50 |
+
processed_text = process_text_with_model(text)
|
51 |
+
logger.info(f"Processed text: {processed_text}")
|
52 |
+
|
53 |
+
# Convert processed text to JSON
|
54 |
+
json_file = text_to_json(processed_text)
|
55 |
+
|
56 |
+
# Get Hugging Face API token
|
57 |
+
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
58 |
+
if not token:
|
59 |
raise ValueError("Hugging Face API token not found. Please set HUGGINGFACE_API_TOKEN environment variable.")
|
60 |
+
|
61 |
+
# Upload file to Hugging Face
|
62 |
+
api = HfApi()
|
63 |
repo_id = "katsukiai/DeepFocus-X3"
|
64 |
upload_info = api.upload_file(
|
65 |
path_or_fileobj=json_file,
|
66 |
+
path_in_repo=f"convert/{os.path.basename(json_file)}",
|
67 |
repo_id=repo_id,
|
68 |
repo_type="dataset",
|
69 |
token=token
|
70 |
)
|
71 |
+
|
72 |
+
logger.info(f"File uploaded successfully: {upload_info}")
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Delete local JSON file after upload
|
75 |
+
os.remove(json_file)
|
76 |
+
logger.info(f"Deleted local file: {json_file}")
|
77 |
|
78 |
+
return f"Upload successful! Filename: {os.path.basename(json_file)}", None
|
79 |
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Error: {e}")
|
82 |
+
return f"Error: {str(e)}", None
|
83 |
|
84 |
+
# Create Gradio UI
|
85 |
with gr.Blocks() as demo:
|
86 |
with gr.Tab("About"):
|
87 |
gr.Markdown("""
|
88 |
+
# Text Processor with DeepSeek-V3 (CPU)
|
89 |
+
- Processes text with DeepSeek-V3 Transformer
|
90 |
+
- Converts output to JSON
|
91 |
+
- Uploads to Hugging Face
|
92 |
+
|
93 |
+
## Instructions:
|
94 |
+
1. Enter text in the "Generate" tab.
|
95 |
+
2. Click "Generate and Upload."
|
96 |
+
3. Download JSON if needed.
|
97 |
+
4. Check upload status.
|
98 |
+
|
99 |
+
## Requirements:
|
100 |
+
- **Runs on CPU** (No GPU required).
|
101 |
+
- **Hugging Face API Token** (`HUGGINGFACE_API_TOKEN`) must be set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
""")
|
103 |
+
|
104 |
with gr.Tab("Generate"):
|
105 |
text_input = gr.Textbox(label="Enter text")
|
106 |
output_message = gr.Textbox(label="Status message")
|
107 |
+
json_file_downloader = gr.File(label="Download JSON", interactive=True)
|
108 |
generate_button = gr.Button("Generate and Upload")
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
generate_button.click(
|
111 |
+
fn=generate_and_upload,
|
112 |
+
inputs=text_input,
|
113 |
+
outputs=[output_message, json_file_downloader]
|
114 |
+
)
|
115 |
|
116 |
+
# Launch Gradio app
|
117 |
+
demo.launch()
|