Spaces:
Runtime error
Runtime error
File size: 7,248 Bytes
430a6c7 972f9e7 430a6c7 b97942e 430a6c7 b97942e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import cv2
import numpy as np
import pytesseract
import requests
import pandas as pd
import gradio as gr
from io import BytesIO
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. Utility: Detect rectangular contours (approximate book covers)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def detect_book_regions(image: np.ndarray, min_area=10000, eps_coef=0.02):
"""
Detect rectangular regions in an image that likely correspond to book covers.
Returns a list of bounding boxes: (x, y, w, h).
"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 50, 150)
# Dilate + erode to close gaps
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
contours, _ = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
boxes = []
for cnt in contours:
area = cv2.contourArea(cnt)
if area < min_area:
continue
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, eps_coef * peri, True)
# Keep only quadrilaterals
if len(approx) == 4:
x, y, w, h = cv2.boundingRect(approx)
ar = w / float(h)
# Filter by typical book-cover aspect ratios
if 0.4 < ar < 0.9 or 1.0 < ar < 1.6:
boxes.append((x, y, w, h))
# Sort leftβright, topβbottom
boxes = sorted(boxes, key=lambda b: (b[1], b[0]))
return boxes
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. OCR on a cropped region
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def ocr_on_region(image: np.ndarray, box: tuple):
"""
Crop the image to the given box and run Tesseract OCR.
Return the raw OCR text.
"""
x, y, w, h = box
cropped = image[y:y + h, x:x + w]
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
_, thresh_crop = cv2.threshold(gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
return text.strip()
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. Query OpenLibrary API
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def query_openlibrary(title_text: str, author_text: str = None):
"""
Search OpenLibrary by title (and optional author).
Return a dict with title, author_name, publisher, first_publish_year, or None.
"""
base_url = "https://openlibrary.org/search.json"
params = {"title": title_text}
if author_text:
params["author"] = author_text
try:
resp = requests.get(base_url, params=params, timeout=5)
resp.raise_for_status()
data = resp.json()
if data.get("docs"):
doc = data["docs"][0]
return {
"title": doc.get("title", ""),
"author_name": ", ".join(doc.get("author_name", [])),
"publisher": ", ".join(doc.get("publisher", [])),
"first_publish_year": doc.get("first_publish_year", "")
}
except Exception as e:
print(f"OpenLibrary query failed: {e}")
return None
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. Process one uploaded image
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_image(image_file):
"""
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β OCR β OpenLibrary.
Return a DataFrame and CSV bytes.
"""
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR
boxes = detect_book_regions(img)
records = []
for box in boxes:
ocr_text = ocr_on_region(img, box)
lines = [l.strip() for l in ocr_text.splitlines() if l.strip()]
if not lines:
continue
title_guess = lines[0]
author_guess = lines[1] if len(lines) > 1 else None
meta = query_openlibrary(title_guess, author_guess)
if meta:
records.append(meta)
else:
records.append({
"title": title_guess,
"author_name": author_guess or "",
"publisher": "",
"first_publish_year": "",
})
if not records:
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
return df_empty, df_empty.to_csv(index=False).encode()
df = pd.DataFrame(records)
csv_bytes = df.to_csv(index=False).encode()
return df, csv_bytes
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 5. Build the Gradio Interface
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_interface():
with gr.Blocks(title="Book Cover Scanner") as demo:
gr.Markdown(
"""
## Book Cover Scanner + Metadata Lookup
1. Upload a photo containing one or multiple book covers
2. The app will detect each cover, run OCR, then query OpenLibrary for metadata
3. Results appear in a table below, and you can download a CSV
"""
)
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Image of Book Covers")
run_button = gr.Button("Scan & Lookup")
output_table = gr.Dataframe(
headers=["title", "author_name", "publisher", "first_publish_year"],
label="Detected Books with Metadata"
)
download_btn = gr.Download(label="Download CSV")
def on_run(image):
df, csv_bytes = process_image(image)
return df, csv_bytes
run_button.click(fn=on_run, inputs=[img_in], outputs=[output_table, download_btn])
return demo
if __name__ == "__main__":
demo_app = build_interface()
demo_app.launch() |