Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Load the audio classification model | |
pipe = pipeline("audio-classification", model="dima806/english_accents_classification") | |
# Define the inference function with styled, color-coded output | |
def classify_accent(audio): | |
try: | |
result = pipe(audio) | |
if not result: | |
return "<p style='color: red; font-weight: bold;'>โ ๏ธ No prediction returned. Please try a different audio file.</p>" | |
# Start HTML table with styling | |
table = """ | |
<table style=" | |
width: 100%; | |
border-collapse: collapse; | |
font-family: Arial, sans-serif; | |
margin-top: 1em; | |
"> | |
<thead> | |
<tr style="border-bottom: 2px solid #4CAF50; background-color: #f2f2f2;"> | |
<th style="text-align:left; padding: 8px; font-size: 1.1em; color: #333;">Accent</th> | |
<th style="text-align:left; padding: 8px; font-size: 1.1em; color: #333;">Confidence</th> | |
</tr> | |
</thead> | |
<tbody> | |
""" | |
for i, r in enumerate(result): | |
label = r['label'].capitalize() | |
score = f"{r['score'] * 100:.2f}%" | |
if i == 0: | |
# Highlight top accent with green background and bold text | |
row = f""" | |
<tr style="background-color:#d4edda; font-weight: bold; color: #155724;"> | |
<td style="padding: 8px; border-bottom: 1px solid #c3e6cb;">{label}</td> | |
<td style="padding: 8px; border-bottom: 1px solid #c3e6cb;">{score}</td> | |
</tr> | |
""" | |
else: | |
row = f""" | |
<tr style="color: #333;"> | |
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{label}</td> | |
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{score}</td> | |
</tr> | |
""" | |
table += row | |
table += "</tbody></table>" | |
top_result = result[0] | |
return f""" | |
<h3 style='color: #2E7D32; font-family: Arial, sans-serif;'> | |
๐ค Predicted Accent: <span style='font-weight:bold'>{top_result['label'].capitalize()}</span> | |
</h3> | |
{table} | |
""" | |
except Exception as e: | |
error_message = str(e) | |
if "numpy ndarray" in error_message.lower(): | |
return "<p style='color: red; font-weight: bold;'>โ ๏ธ Error: Invalid input.<br> Please end the recording then press submit.</p>" | |
else: | |
return f"<p style='color: red; font-weight: bold;'>โ ๏ธ Unexpected Error: {error_message}<br>Please try again with a different audio file.</p>" | |
# Create and launch the Gradio app | |
gr.Interface( | |
fn=classify_accent, | |
inputs=gr.Audio(type="filepath", label="๐ Record or Upload English Audio"), | |
outputs=gr.HTML(), # Use HTML to render styled output | |
title="๐ English Accent Classifier", | |
description=( | |
"Upload or record an English audio sample to detect the speaker's accent.\n\n" | |
"**Supported accents:** American, British, Indian, African, Australian.\n" | |
"Audio Classification Model:\n" | |
"[dima806/english_accents_classification](https://huggingface.co/dima806/english_accents_classification)\n" | |
"Dataset: https://www.kaggle.com/code/dima806/common-voice-accent-classification\n" | |
), | |
flagging_mode="never", | |
theme="default" | |
).launch(share=True) | |