#!/usr/bin/env python3 """ GAIA Evaluator A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions. """ import json import logging from pathlib import Path from typing import Dict, List, Any, Optional, Tuple import statistics from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from answer_validator import AnswerValidator class GAIAEvaluator: """ A comprehensive evaluation system for GAIA benchmark performance analysis. Provides detailed metrics, visualizations, and comparative analysis. """ def __init__(self, results_dir: Optional[str] = None, validation_file: Optional[str] = "gaia_validation_metadata.jsonl"): """ Initialize the GAIA evaluator. Args: results_dir: Directory containing test results (None to provide later) validation_file: Path to validation metadata file """ self.logger = logging.getLogger("GAIAEvaluator") self.results_dir = Path(results_dir) if results_dir else None self.validation_file = Path(validation_file) if validation_file else None self.validator = AnswerValidator() # Performance metrics self.metrics = {} self.question_details = {} self.validation_data = {} # Load validation data if provided if self.validation_file and self.validation_file.exists(): self._load_validation_data() def _load_validation_data(self) -> None: """Load validation data from JSONL file.""" self.logger.info(f"Loading validation data from {self.validation_file}") try: with open(self.validation_file, 'r') as f: for line in f: try: entry = json.loads(line) question_id = entry.get('question_id') if question_id: self.validation_data[question_id] = entry except json.JSONDecodeError: self.logger.warning(f"Could not parse line in validation file: {line[:50]}...") except Exception as e: self.logger.error(f"Error loading validation data: {e}") def set_results_directory(self, results_dir: str) -> None: """Set or update the results directory.""" self.results_dir = Path(results_dir) def load_results(self, results_file: Optional[str] = None) -> Dict: """ Load test results from the specified file or search for it. Args: results_file: Specific results file to load (None to search in results_dir) Returns: Dict of loaded results """ if results_file: file_path = Path(results_file) elif self.results_dir: # Find the most recent results.json file json_files = list(self.results_dir.glob("**/results.json")) if not json_files: self.logger.error(f"No results.json files found in {self.results_dir}") return {} # Sort by modification time, newest first file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0] else: self.logger.error("No results directory or file specified") return {} try: self.logger.info(f"Loading results from {file_path}") with open(file_path, 'r') as f: results = json.load(f) return results except Exception as e: self.logger.error(f"Error loading results: {e}") return {} def evaluate(self, results: Dict = None) -> Dict: """ Evaluate GAIA test results with comprehensive metrics. Args: results: Test results dict (None to load from file) Returns: Dict of evaluation metrics """ if not results: results = self.load_results() if not results: return {} # Calculate basic metrics total_questions = len(results) correct_answers = 0 partial_answers = 0 incorrect_answers = 0 errors = 0 timeouts = 0 classification_accuracy = 0 total_classified = 0 processing_times = [] confidence_scores = [] # Analyze each question question_metrics = {} for question_id, data in results.items(): # Extract validation status validation = data.get('validation', {}) validation_status = validation.get('validation_status', 'error') # Basic counters if validation_status == 'correct': correct_answers += 1 elif validation_status == 'partial': partial_answers += 1 elif validation_status == 'incorrect': incorrect_answers += 1 elif validation_status == 'error': errors += 1 elif validation_status == 'timeout': timeouts += 1 # Track processing time if 'processing_time' in data: processing_times.append(data['processing_time']) # Track confidence scores if 'confidence_score' in validation: confidence_scores.append(validation['confidence_score']) # Track classification accuracy if 'classification' in data: classification_data = data['classification'] total_classified += 1 if classification_data.get('is_correct', False): classification_accuracy += 1 # Store detailed metrics per question question_metrics[question_id] = { 'validation_status': validation_status, 'processing_time': data.get('processing_time'), 'confidence_score': validation.get('confidence_score'), 'classification': data.get('classification', {}).get('classification'), 'is_classification_correct': data.get('classification', {}).get('is_correct', False), 'tools_used': data.get('tools_used', []), 'steps_count': len(data.get('steps', [])), } # Calculate derived metrics accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0 success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0 classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0 avg_processing_time = statistics.mean(processing_times) if processing_times else 0 median_processing_time = statistics.median(processing_times) if processing_times else 0 avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0 # Store metrics self.metrics = { 'total_questions': total_questions, 'correct_answers': correct_answers, 'partial_answers': partial_answers, 'incorrect_answers': incorrect_answers, 'errors': errors, 'timeouts': timeouts, 'accuracy': accuracy, 'success_rate': success_rate, 'classification_accuracy': classification_accuracy_pct, 'avg_processing_time': avg_processing_time, 'median_processing_time': median_processing_time, 'avg_confidence_score': avg_confidence, } self.question_details = question_metrics return self.metrics def visualize_performance(self, output_dir: Optional[str] = None) -> None: """ Generate visualizations of performance metrics. Args: output_dir: Directory to save visualizations (None to use results_dir) """ if not self.metrics: self.logger.error("No metrics available. Run evaluate() first.") return if not output_dir: output_dir = self.results_dir output_path = Path(output_dir) output_path.mkdir(exist_ok=True) # Set the style sns.set(style="whitegrid") plt.rcParams.update({'font.size': 12}) # Create visualizations self._create_accuracy_chart(output_path) self._create_timing_chart(output_path) self._create_question_type_chart(output_path) self._create_confidence_distribution(output_path) def _create_accuracy_chart(self, output_path: Path) -> None: """Create accuracy breakdown chart.""" categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout'] values = [ self.metrics['correct_answers'], self.metrics['partial_answers'], self.metrics['incorrect_answers'], self.metrics['errors'], self.metrics['timeouts'] ] plt.figure(figsize=(10, 6)) colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6'] ax = plt.bar(categories, values, color=colors) for i, v in enumerate(values): plt.text(i, v + 0.1, str(v), ha='center') plt.title('Accuracy Breakdown') plt.ylabel('Number of Questions') plt.tight_layout() plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300) plt.close() def _create_timing_chart(self, output_path: Path) -> None: """Create timing analysis chart.""" if not self.question_details: return # Extract times and statuses times = [] statuses = [] labels = [] for q_id, details in self.question_details.items(): if details.get('processing_time'): times.append(details['processing_time']) statuses.append(details['validation_status']) labels.append(q_id) if not times: return # Convert to dataframe df = pd.DataFrame({ 'Question': labels, 'Time (s)': times, 'Status': statuses }) # Sort by time df = df.sort_values('Time (s)', ascending=False) plt.figure(figsize=(12, 8)) # Color mapping color_map = { 'correct': '#2ecc71', 'partial': '#f39c12', 'incorrect': '#e74c3c', 'error': '#7f8c8d', 'timeout': '#95a5a6' } sns.barplot(x='Time (s)', y='Question', hue='Status', data=df, palette=color_map, dodge=False) plt.title('Processing Time by Question') plt.tight_layout() plt.savefig(output_path / 'processing_times.png', dpi=300) plt.close() def _create_question_type_chart(self, output_path: Path) -> None: """Create question type performance chart.""" if not self.question_details: return # Group by classification type question_types = {} for q_id, details in self.question_details.items(): q_type = details.get('classification', 'unknown') if q_type not in question_types: question_types[q_type] = { 'total': 0, 'correct': 0, 'partial': 0, 'incorrect': 0, 'other': 0 } question_types[q_type]['total'] += 1 status = details.get('validation_status') if status == 'correct': question_types[q_type]['correct'] += 1 elif status == 'partial': question_types[q_type]['partial'] += 1 elif status == 'incorrect': question_types[q_type]['incorrect'] += 1 else: question_types[q_type]['other'] += 1 # Convert to dataframe types = [] statuses = [] counts = [] for q_type, stats in question_types.items(): for status, count in stats.items(): if status != 'total': types.append(q_type) statuses.append(status) counts.append(count) df = pd.DataFrame({ 'Question Type': types, 'Status': statuses, 'Count': counts }) plt.figure(figsize=(12, 8)) # Create grouped bar chart sns.barplot(x='Question Type', y='Count', hue='Status', data=df) plt.title('Performance by Question Type') plt.tight_layout() plt.savefig(output_path / 'question_type_performance.png', dpi=300) plt.close() def _create_confidence_distribution(self, output_path: Path) -> None: """Create confidence score distribution chart.""" if not self.question_details: return # Extract confidence scores and statuses scores = [] statuses = [] for details in self.question_details.values(): conf_score = details.get('confidence_score') if conf_score is not None: scores.append(conf_score) statuses.append(details['validation_status']) if not scores: return # Create dataframe df = pd.DataFrame({ 'Confidence Score': scores, 'Status': statuses }) plt.figure(figsize=(10, 6)) # Create histogram with KDE sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True) plt.title('Confidence Score Distribution') plt.tight_layout() plt.savefig(output_path / 'confidence_distribution.png', dpi=300) plt.close() def generate_report(self, output_file: Optional[str] = None) -> str: """ Generate a comprehensive evaluation report. Args: output_file: Path to save the report (None for no saving) Returns: HTML report as string """ if not self.metrics: self.logger.error("No metrics available. Run evaluate() first.") return "" # Create report HTML report = f"""
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Metric | Count | Percentage |
---|---|---|
Correct Answers | {self.metrics['correct_answers']} | {(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}% |
Partial Answers | {self.metrics['partial_answers']} | {(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}% |
Incorrect Answers | {self.metrics['incorrect_answers']} | {(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}% |
Errors | {self.metrics['errors']} | {(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}% |
Timeouts | {self.metrics['timeouts']} | {(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}% |
Question ID | Status | Processing Time (s) | Confidence | Classification |
---|