#!/usr/bin/env python3 """ GAIA Evaluator A comprehensive evaluation system for analyzing GAIA agent performance across different dimensions. """ import json import logging from pathlib import Path from typing import Dict, List, Any, Optional, Tuple import statistics from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from answer_validator import AnswerValidator class GAIAEvaluator: """ A comprehensive evaluation system for GAIA benchmark performance analysis. Provides detailed metrics, visualizations, and comparative analysis. """ def __init__(self, results_dir: Optional[str] = None, validation_file: Optional[str] = "gaia_validation_metadata.jsonl"): """ Initialize the GAIA evaluator. Args: results_dir: Directory containing test results (None to provide later) validation_file: Path to validation metadata file """ self.logger = logging.getLogger("GAIAEvaluator") self.results_dir = Path(results_dir) if results_dir else None self.validation_file = Path(validation_file) if validation_file else None self.validator = AnswerValidator() # Performance metrics self.metrics = {} self.question_details = {} self.validation_data = {} # Load validation data if provided if self.validation_file and self.validation_file.exists(): self._load_validation_data() def _load_validation_data(self) -> None: """Load validation data from JSONL file.""" self.logger.info(f"Loading validation data from {self.validation_file}") try: with open(self.validation_file, 'r') as f: for line in f: try: entry = json.loads(line) question_id = entry.get('question_id') if question_id: self.validation_data[question_id] = entry except json.JSONDecodeError: self.logger.warning(f"Could not parse line in validation file: {line[:50]}...") except Exception as e: self.logger.error(f"Error loading validation data: {e}") def set_results_directory(self, results_dir: str) -> None: """Set or update the results directory.""" self.results_dir = Path(results_dir) def load_results(self, results_file: Optional[str] = None) -> Dict: """ Load test results from the specified file or search for it. Args: results_file: Specific results file to load (None to search in results_dir) Returns: Dict of loaded results """ if results_file: file_path = Path(results_file) elif self.results_dir: # Find the most recent results.json file json_files = list(self.results_dir.glob("**/results.json")) if not json_files: self.logger.error(f"No results.json files found in {self.results_dir}") return {} # Sort by modification time, newest first file_path = sorted(json_files, key=lambda x: x.stat().st_mtime, reverse=True)[0] else: self.logger.error("No results directory or file specified") return {} try: self.logger.info(f"Loading results from {file_path}") with open(file_path, 'r') as f: results = json.load(f) return results except Exception as e: self.logger.error(f"Error loading results: {e}") return {} def evaluate(self, results: Dict = None) -> Dict: """ Evaluate GAIA test results with comprehensive metrics. Args: results: Test results dict (None to load from file) Returns: Dict of evaluation metrics """ if not results: results = self.load_results() if not results: return {} # Calculate basic metrics total_questions = len(results) correct_answers = 0 partial_answers = 0 incorrect_answers = 0 errors = 0 timeouts = 0 classification_accuracy = 0 total_classified = 0 processing_times = [] confidence_scores = [] # Analyze each question question_metrics = {} for question_id, data in results.items(): # Extract validation status validation = data.get('validation', {}) validation_status = validation.get('validation_status', 'error') # Basic counters if validation_status == 'correct': correct_answers += 1 elif validation_status == 'partial': partial_answers += 1 elif validation_status == 'incorrect': incorrect_answers += 1 elif validation_status == 'error': errors += 1 elif validation_status == 'timeout': timeouts += 1 # Track processing time if 'processing_time' in data: processing_times.append(data['processing_time']) # Track confidence scores if 'confidence_score' in validation: confidence_scores.append(validation['confidence_score']) # Track classification accuracy if 'classification' in data: classification_data = data['classification'] total_classified += 1 if classification_data.get('is_correct', False): classification_accuracy += 1 # Store detailed metrics per question question_metrics[question_id] = { 'validation_status': validation_status, 'processing_time': data.get('processing_time'), 'confidence_score': validation.get('confidence_score'), 'classification': data.get('classification', {}).get('classification'), 'is_classification_correct': data.get('classification', {}).get('is_correct', False), 'tools_used': data.get('tools_used', []), 'steps_count': len(data.get('steps', [])), } # Calculate derived metrics accuracy = (correct_answers / total_questions) * 100 if total_questions > 0 else 0 success_rate = ((correct_answers + partial_answers) / total_questions) * 100 if total_questions > 0 else 0 classification_accuracy_pct = (classification_accuracy / total_classified) * 100 if total_classified > 0 else 0 avg_processing_time = statistics.mean(processing_times) if processing_times else 0 median_processing_time = statistics.median(processing_times) if processing_times else 0 avg_confidence = statistics.mean(confidence_scores) if confidence_scores else 0 # Store metrics self.metrics = { 'total_questions': total_questions, 'correct_answers': correct_answers, 'partial_answers': partial_answers, 'incorrect_answers': incorrect_answers, 'errors': errors, 'timeouts': timeouts, 'accuracy': accuracy, 'success_rate': success_rate, 'classification_accuracy': classification_accuracy_pct, 'avg_processing_time': avg_processing_time, 'median_processing_time': median_processing_time, 'avg_confidence_score': avg_confidence, } self.question_details = question_metrics return self.metrics def visualize_performance(self, output_dir: Optional[str] = None) -> None: """ Generate visualizations of performance metrics. Args: output_dir: Directory to save visualizations (None to use results_dir) """ if not self.metrics: self.logger.error("No metrics available. Run evaluate() first.") return if not output_dir: output_dir = self.results_dir output_path = Path(output_dir) output_path.mkdir(exist_ok=True) # Set the style sns.set(style="whitegrid") plt.rcParams.update({'font.size': 12}) # Create visualizations self._create_accuracy_chart(output_path) self._create_timing_chart(output_path) self._create_question_type_chart(output_path) self._create_confidence_distribution(output_path) def _create_accuracy_chart(self, output_path: Path) -> None: """Create accuracy breakdown chart.""" categories = ['Correct', 'Partial', 'Incorrect', 'Error', 'Timeout'] values = [ self.metrics['correct_answers'], self.metrics['partial_answers'], self.metrics['incorrect_answers'], self.metrics['errors'], self.metrics['timeouts'] ] plt.figure(figsize=(10, 6)) colors = ['#2ecc71', '#f39c12', '#e74c3c', '#7f8c8d', '#95a5a6'] ax = plt.bar(categories, values, color=colors) for i, v in enumerate(values): plt.text(i, v + 0.1, str(v), ha='center') plt.title('Accuracy Breakdown') plt.ylabel('Number of Questions') plt.tight_layout() plt.savefig(output_path / 'accuracy_breakdown.png', dpi=300) plt.close() def _create_timing_chart(self, output_path: Path) -> None: """Create timing analysis chart.""" if not self.question_details: return # Extract times and statuses times = [] statuses = [] labels = [] for q_id, details in self.question_details.items(): if details.get('processing_time'): times.append(details['processing_time']) statuses.append(details['validation_status']) labels.append(q_id) if not times: return # Convert to dataframe df = pd.DataFrame({ 'Question': labels, 'Time (s)': times, 'Status': statuses }) # Sort by time df = df.sort_values('Time (s)', ascending=False) plt.figure(figsize=(12, 8)) # Color mapping color_map = { 'correct': '#2ecc71', 'partial': '#f39c12', 'incorrect': '#e74c3c', 'error': '#7f8c8d', 'timeout': '#95a5a6' } sns.barplot(x='Time (s)', y='Question', hue='Status', data=df, palette=color_map, dodge=False) plt.title('Processing Time by Question') plt.tight_layout() plt.savefig(output_path / 'processing_times.png', dpi=300) plt.close() def _create_question_type_chart(self, output_path: Path) -> None: """Create question type performance chart.""" if not self.question_details: return # Group by classification type question_types = {} for q_id, details in self.question_details.items(): q_type = details.get('classification', 'unknown') if q_type not in question_types: question_types[q_type] = { 'total': 0, 'correct': 0, 'partial': 0, 'incorrect': 0, 'other': 0 } question_types[q_type]['total'] += 1 status = details.get('validation_status') if status == 'correct': question_types[q_type]['correct'] += 1 elif status == 'partial': question_types[q_type]['partial'] += 1 elif status == 'incorrect': question_types[q_type]['incorrect'] += 1 else: question_types[q_type]['other'] += 1 # Convert to dataframe types = [] statuses = [] counts = [] for q_type, stats in question_types.items(): for status, count in stats.items(): if status != 'total': types.append(q_type) statuses.append(status) counts.append(count) df = pd.DataFrame({ 'Question Type': types, 'Status': statuses, 'Count': counts }) plt.figure(figsize=(12, 8)) # Create grouped bar chart sns.barplot(x='Question Type', y='Count', hue='Status', data=df) plt.title('Performance by Question Type') plt.tight_layout() plt.savefig(output_path / 'question_type_performance.png', dpi=300) plt.close() def _create_confidence_distribution(self, output_path: Path) -> None: """Create confidence score distribution chart.""" if not self.question_details: return # Extract confidence scores and statuses scores = [] statuses = [] for details in self.question_details.values(): conf_score = details.get('confidence_score') if conf_score is not None: scores.append(conf_score) statuses.append(details['validation_status']) if not scores: return # Create dataframe df = pd.DataFrame({ 'Confidence Score': scores, 'Status': statuses }) plt.figure(figsize=(10, 6)) # Create histogram with KDE sns.histplot(data=df, x='Confidence Score', hue='Status', kde=True) plt.title('Confidence Score Distribution') plt.tight_layout() plt.savefig(output_path / 'confidence_distribution.png', dpi=300) plt.close() def generate_report(self, output_file: Optional[str] = None) -> str: """ Generate a comprehensive evaluation report. Args: output_file: Path to save the report (None for no saving) Returns: HTML report as string """ if not self.metrics: self.logger.error("No metrics available. Run evaluate() first.") return "" # Create report HTML report = f""" GAIA Performance Evaluation Report

GAIA Performance Evaluation Report

Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

Summary Metrics

Accuracy
{self.metrics['accuracy']:.2f}%
Success Rate (Correct + Partial)
{self.metrics['success_rate']:.2f}%
Classification Accuracy
{self.metrics['classification_accuracy']:.2f}%
Average Processing Time
{self.metrics['avg_processing_time']:.2f} seconds

Accuracy Breakdown

Metric Count Percentage
Correct Answers {self.metrics['correct_answers']} {(self.metrics['correct_answers'] / self.metrics['total_questions'] * 100):.2f}%
Partial Answers {self.metrics['partial_answers']} {(self.metrics['partial_answers'] / self.metrics['total_questions'] * 100):.2f}%
Incorrect Answers {self.metrics['incorrect_answers']} {(self.metrics['incorrect_answers'] / self.metrics['total_questions'] * 100):.2f}%
Errors {self.metrics['errors']} {(self.metrics['errors'] / self.metrics['total_questions'] * 100):.2f}%
Timeouts {self.metrics['timeouts']} {(self.metrics['timeouts'] / self.metrics['total_questions'] * 100):.2f}%

Performance Visualizations

Accuracy Breakdown Processing Times Question Type Performance Confidence Distribution

Detailed Question Results

{self._generate_question_rows()}
Question ID Status Processing Time (s) Confidence Classification
""" # Save if output file provided if output_file: try: with open(output_file, 'w') as f: f.write(report) self.logger.info(f"Report saved to {output_file}") except Exception as e: self.logger.error(f"Error saving report: {e}") return report def _get_color_class(self, value: float) -> str: """Get CSS class based on value.""" if value >= 80: return "good" elif value >= 60: return "medium" else: return "poor" def _generate_question_rows(self) -> str: """Generate HTML table rows for question details.""" rows = "" for q_id, details in self.question_details.items(): status = details.get('validation_status', 'unknown') proc_time = f"{details.get('processing_time', 'N/A'):.2f}" if details.get('processing_time') else 'N/A' confidence = f"{details.get('confidence_score', 'N/A'):.2f}" if details.get('confidence_score') is not None else 'N/A' classification = details.get('classification', 'unknown') # Get status class status_class = "" if status == 'correct': status_class = "good" elif status == 'partial': status_class = "medium" elif status in ('incorrect', 'error', 'timeout'): status_class = "poor" rows += f""" {q_id} {status} {proc_time} {confidence} {classification} """ return rows def compare_runs(self, results_files: List[str], labels: List[str]) -> Dict: """ Compare metrics across multiple test runs. Args: results_files: List of results files to compare labels: Labels for each run Returns: Dict with comparison data """ if len(results_files) != len(labels): self.logger.error("Number of result files must match number of labels") return {} comparison_data = { 'runs': {}, 'metrics': ['accuracy', 'success_rate', 'classification_accuracy', 'avg_processing_time', 'correct_answers', 'partial_answers', 'incorrect_answers', 'errors', 'timeouts'] } for i, (file_path, label) in enumerate(zip(results_files, labels)): # Create a temporary evaluator to analyze this run temp_evaluator = GAIAEvaluator(validation_file=self.validation_file) results = temp_evaluator.load_results(file_path) metrics = temp_evaluator.evaluate(results) if metrics: comparison_data['runs'][label] = metrics return comparison_data def visualize_comparison(self, comparison_data: Dict, output_dir: str) -> None: """ Create visualizations comparing multiple runs. Args: comparison_data: Data from compare_runs method output_dir: Directory to save visualizations """ if not comparison_data or not comparison_data.get('runs'): self.logger.error("No comparison data available") return output_path = Path(output_dir) output_path.mkdir(exist_ok=True) # Set style sns.set(style="whitegrid") plt.rcParams.update({'font.size': 12}) # Get run labels and metrics run_labels = list(comparison_data['runs'].keys()) all_metrics = comparison_data['metrics'] # Create bar chart for key metrics key_metrics = ['accuracy', 'success_rate', 'classification_accuracy'] # Extract data metric_values = {metric: [] for metric in key_metrics} for run_label in run_labels: run_data = comparison_data['runs'][run_label] for metric in key_metrics: metric_values[metric].append(run_data.get(metric, 0)) # Create grouped bar chart plt.figure(figsize=(12, 8)) x = np.arange(len(run_labels)) width = 0.25 for i, metric in enumerate(key_metrics): plt.bar(x + i*width - width, metric_values[metric], width, label=metric.replace('_', ' ').title()) plt.xlabel('Test Run') plt.ylabel('Percentage') plt.title('Key Metrics Comparison') plt.xticks(x, run_labels) plt.legend() plt.tight_layout() plt.savefig(output_path / 'metrics_comparison.png', dpi=300) plt.close() # Create processing time comparison times = [comparison_data['runs'][label].get('avg_processing_time', 0) for label in run_labels] plt.figure(figsize=(10, 6)) plt.bar(run_labels, times) plt.xlabel('Test Run') plt.ylabel('Average Processing Time (s)') plt.title('Processing Time Comparison') plt.tight_layout() plt.savefig(output_path / 'processing_time_comparison.png', dpi=300) plt.close() if __name__ == "__main__": import argparse # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s", handlers=[logging.StreamHandler()] ) # Parse arguments parser = argparse.ArgumentParser(description="GAIA Benchmark Evaluation Tool") parser.add_argument("--results_dir", type=str, help="Directory containing test results") parser.add_argument("--results_file", type=str, help="Specific results file to evaluate") parser.add_argument("--validation_file", type=str, default="gaia_validation_metadata.jsonl", help="Path to validation metadata file") parser.add_argument("--output_dir", type=str, help="Directory to save evaluation outputs") parser.add_argument("--report_file", type=str, help="Path to save HTML report") parser.add_argument("--compare", action="store_true", help="Compare multiple test runs") parser.add_argument("--compare_files", type=str, nargs="+", help="List of files to compare") parser.add_argument("--compare_labels", type=str, nargs="+", help="Labels for comparison runs") args = parser.parse_args() # Initialize evaluator evaluator = GAIAEvaluator( results_dir=args.results_dir, validation_file=args.validation_file ) # Handle comparison mode if args.compare and args.compare_files and args.compare_labels: comparison_data = evaluator.compare_runs(args.compare_files, args.compare_labels) if comparison_data and args.output_dir: evaluator.visualize_comparison(comparison_data, args.output_dir) print(f"Comparison visualizations saved to {args.output_dir}") else: # Regular evaluation if args.results_file: results = evaluator.load_results(args.results_file) else: results = evaluator.load_results() if results: metrics = evaluator.evaluate(results) print(f"Evaluation metrics: {metrics}") if args.output_dir: evaluator.visualize_performance(args.output_dir) print(f"Performance visualizations saved to {args.output_dir}") if args.report_file: evaluator.generate_report(args.report_file) print(f"Report saved to {args.report_file}")