#!/usr/bin/env python3 """ Classification Analyzer Performance analysis by question classification to identify improvement areas. """ import json import logging from collections import defaultdict, Counter from datetime import datetime from pathlib import Path from typing import Dict, List, Tuple, Any import statistics class ClassificationAnalyzer: """Analyzer for performance metrics by question classification.""" def __init__(self): """Initialize the classification analyzer.""" self.logger = logging.getLogger("ClassificationAnalyzer") async def analyze_by_classification(self, results: Dict[str, Dict], session_dir: Path) -> Dict: """ Analyze test results by question classification. Args: results: Test results keyed by question_id session_dir: Directory to save analysis results Returns: Classification analysis report """ self.logger.info("Starting classification-based analysis...") # Organize results by classification classification_data = self.organize_by_classification(results) # Calculate performance metrics performance_metrics = self.calculate_performance_metrics(classification_data) # Analyze tool effectiveness tool_effectiveness = self.analyze_tool_effectiveness(classification_data) # Identify improvement areas improvement_areas = self.identify_improvement_areas(performance_metrics, tool_effectiveness) # Create comprehensive report analysis_report = { "analysis_timestamp": datetime.now().isoformat(), "total_questions": len(results), "classification_breakdown": self.get_classification_breakdown(classification_data), "performance_metrics": performance_metrics, "tool_effectiveness": tool_effectiveness, "improvement_areas": improvement_areas, "detailed_data": classification_data } # Save analysis report report_file = session_dir / "classification_analysis.json" with open(report_file, 'w') as f: json.dump(analysis_report, f, indent=2) self.logger.info(f"Classification analysis saved to: {report_file}") return analysis_report def organize_by_classification(self, results: Dict[str, Dict]) -> Dict[str, List[Dict]]: """Organize results by question classification.""" classification_data = defaultdict(list) for question_id, result in results.items(): # Get classification info classification = result.get('classification', {}) primary_agent = classification.get('primary_agent', 'unknown') # Add to classification group classification_data[primary_agent].append({ 'question_id': question_id, 'result': result, 'classification': classification }) return dict(classification_data) def calculate_performance_metrics(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]: """Calculate performance metrics for each classification.""" metrics = {} for classification, questions in classification_data.items(): # Accuracy metrics validation_statuses = [] execution_times = [] complexity_scores = [] confidence_scores = [] correct_count = 0 partial_count = 0 incorrect_count = 0 timeout_count = 0 error_count = 0 for question_data in questions: result = question_data['result'] classification_info = question_data['classification'] # Validation status validation = result.get('validation', {}) status = validation.get('validation_status', 'unknown') validation_statuses.append(status) if status == 'correct': correct_count += 1 elif status == 'partial': partial_count += 1 elif status == 'incorrect': incorrect_count += 1 # Execution metrics solver_result = result.get('solver_result', {}) if solver_result.get('status') == 'timeout': timeout_count += 1 elif solver_result.get('status') == 'error': error_count += 1 # Timing exec_time = result.get('total_processing_time', 0) if exec_time > 0: execution_times.append(exec_time) # Classification metrics complexity = classification_info.get('complexity', 0) if complexity > 0: complexity_scores.append(complexity) confidence = classification_info.get('confidence', 0) if confidence > 0: confidence_scores.append(confidence) total_questions = len(questions) # Calculate metrics accuracy = correct_count / total_questions if total_questions > 0 else 0 partial_rate = partial_count / total_questions if total_questions > 0 else 0 error_rate = (error_count + timeout_count) / total_questions if total_questions > 0 else 0 metrics[classification] = { "total_questions": total_questions, "accuracy": accuracy, "partial_accuracy": partial_rate, "error_rate": error_rate, "counts": { "correct": correct_count, "partial": partial_count, "incorrect": incorrect_count, "timeout": timeout_count, "error": error_count }, "execution_time": { "mean": statistics.mean(execution_times) if execution_times else 0, "median": statistics.median(execution_times) if execution_times else 0, "max": max(execution_times) if execution_times else 0, "min": min(execution_times) if execution_times else 0 }, "complexity": { "mean": statistics.mean(complexity_scores) if complexity_scores else 0, "distribution": Counter(complexity_scores) }, "classification_confidence": { "mean": statistics.mean(confidence_scores) if confidence_scores else 0, "min": min(confidence_scores) if confidence_scores else 0 } } return metrics def analyze_tool_effectiveness(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]: """Analyze tool effectiveness across classifications.""" tool_usage = defaultdict(lambda: { 'total_uses': 0, 'successes': 0, 'by_classification': defaultdict(lambda: {'uses': 0, 'successes': 0}) }) for classification, questions in classification_data.items(): for question_data in questions: result = question_data['result'] classification_info = question_data['classification'] # Get tools needed tools_needed = classification_info.get('tools_needed', []) success = result.get('validation', {}).get('validation_status') == 'correct' for tool in tools_needed: tool_usage[tool]['total_uses'] += 1 tool_usage[tool]['by_classification'][classification]['uses'] += 1 if success: tool_usage[tool]['successes'] += 1 tool_usage[tool]['by_classification'][classification]['successes'] += 1 # Calculate effectiveness rates tool_effectiveness = {} for tool, usage_data in tool_usage.items(): total_uses = usage_data['total_uses'] successes = usage_data['successes'] effectiveness_rate = successes / total_uses if total_uses > 0 else 0 # Per-classification effectiveness classification_effectiveness = {} for classification, class_data in usage_data['by_classification'].items(): class_uses = class_data['uses'] class_successes = class_data['successes'] class_rate = class_successes / class_uses if class_uses > 0 else 0 classification_effectiveness[classification] = { 'uses': class_uses, 'successes': class_successes, 'effectiveness_rate': class_rate } tool_effectiveness[tool] = { 'total_uses': total_uses, 'total_successes': successes, 'overall_effectiveness': effectiveness_rate, 'by_classification': classification_effectiveness } return tool_effectiveness def identify_improvement_areas(self, performance_metrics: Dict, tool_effectiveness: Dict) -> Dict[str, List[str]]: """Identify specific improvement areas based on analysis.""" improvements = { "low_accuracy_classifications": [], "high_error_rate_classifications": [], "slow_processing_classifications": [], "ineffective_tools": [], "misclassified_questions": [], "recommendations": [] } # Identify low accuracy classifications for classification, metrics in performance_metrics.items(): accuracy = metrics['accuracy'] error_rate = metrics['error_rate'] avg_time = metrics['execution_time']['mean'] if accuracy < 0.5: # Less than 50% accuracy improvements["low_accuracy_classifications"].append({ "classification": classification, "accuracy": accuracy, "details": f"Only {accuracy:.1%} accuracy with {metrics['total_questions']} questions" }) if error_rate > 0.3: # More than 30% errors/timeouts improvements["high_error_rate_classifications"].append({ "classification": classification, "error_rate": error_rate, "details": f"{error_rate:.1%} error/timeout rate" }) if avg_time > 600: # More than 10 minutes average improvements["slow_processing_classifications"].append({ "classification": classification, "avg_time": avg_time, "details": f"Average {avg_time:.0f} seconds processing time" }) # Identify ineffective tools for tool, effectiveness in tool_effectiveness.items(): overall_rate = effectiveness['overall_effectiveness'] total_uses = effectiveness['total_uses'] if overall_rate < 0.4 and total_uses >= 3: # Less than 40% effectiveness with meaningful usage improvements["ineffective_tools"].append({ "tool": tool, "effectiveness": overall_rate, "uses": total_uses, "details": f"Only {overall_rate:.1%} success rate across {total_uses} uses" }) # Generate recommendations recommendations = [] if improvements["low_accuracy_classifications"]: worst_classification = min(improvements["low_accuracy_classifications"], key=lambda x: x['accuracy']) recommendations.append( f"PRIORITY: Improve {worst_classification['classification']} agent " f"(currently {worst_classification['accuracy']:.1%} accuracy)" ) if improvements["ineffective_tools"]: worst_tool = min(improvements["ineffective_tools"], key=lambda x: x['effectiveness']) recommendations.append( f"TOOL FIX: Revise {worst_tool['tool']} tool " f"(currently {worst_tool['effectiveness']:.1%} effectiveness)" ) if improvements["high_error_rate_classifications"]: recommendations.append( "STABILITY: Address timeout and error handling for classifications with high error rates" ) overall_accuracy = self.calculate_overall_accuracy(performance_metrics) if overall_accuracy < 0.7: recommendations.append( f"SYSTEM: Overall accuracy is {overall_accuracy:.1%} - target 70% for production readiness" ) improvements["recommendations"] = recommendations return improvements def calculate_overall_accuracy(self, performance_metrics: Dict) -> float: """Calculate overall system accuracy across all classifications.""" total_correct = 0 total_questions = 0 for metrics in performance_metrics.values(): total_correct += metrics['counts']['correct'] total_questions += metrics['total_questions'] return total_correct / total_questions if total_questions > 0 else 0 def get_classification_breakdown(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, int]: """Get simple breakdown of question counts by classification.""" return { classification: len(questions) for classification, questions in classification_data.items() }