#!/usr/bin/env python3 """ Enhanced GAIA Testing with Classification Filtering and Error Analysis Test all questions by agent type with comprehensive error tracking and iterative improvement workflow. """ import json import time import argparse import logging import sys from datetime import datetime from typing import Dict, List, Optional from collections import defaultdict from pathlib import Path # Add parent directory to path for imports sys.path.append(str(Path(__file__).parent.parent)) from gaia_web_loader import GAIAQuestionLoaderWeb from main import GAIASolver from question_classifier import QuestionClassifier class GAIAClassificationTester: """Enhanced GAIA testing with classification-based filtering and error analysis""" def __init__(self): self.loader = GAIAQuestionLoaderWeb() self.classifier = QuestionClassifier() self.solver = GAIASolver() self.results = [] self.error_patterns = defaultdict(list) # Create logs directory if it doesn't exist Path("logs").mkdir(exist_ok=True) # Setup logging timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") self.log_file = f"logs/classification_test_{timestamp}.log" logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler(self.log_file), logging.StreamHandler() ] ) self.logger = logging.getLogger(__name__) # Load validation answers after logger is set up self.validation_answers = self.load_validation_answers() def load_validation_answers(self): """Load correct answers from GAIA validation metadata""" answers = {} try: validation_path = Path(__file__).parent.parent / 'gaia_validation_metadata.jsonl' with open(validation_path, 'r') as f: for line in f: if line.strip(): data = json.loads(line.strip()) task_id = data.get('task_id') final_answer = data.get('Final answer') if task_id and final_answer: answers[task_id] = final_answer self.logger.info(f"šŸ“‹ Loaded {len(answers)} validation answers") except Exception as e: self.logger.error(f"āš ļø Could not load validation data: {e}") return answers def validate_answer(self, task_id: str, our_answer: str): """Validate our answer against the correct answer with format normalization""" if task_id not in self.validation_answers: return {"status": "NO_VALIDATION", "expected": "N/A", "our": our_answer} expected = str(self.validation_answers[task_id]).strip() our_clean = str(our_answer).strip() # Exact match (case-insensitive) if our_clean.lower() == expected.lower(): return {"status": "CORRECT", "expected": expected, "our": our_clean} # ENHANCED: Format normalization for comprehensive comparison def normalize_format(text): """Enhanced normalization for fair comparison""" import re text = str(text).lower().strip() # Remove currency symbols and normalize numbers text = re.sub(r'[$€£„]', '', text) # Normalize spacing around commas and punctuation text = re.sub(r'\s*,\s*', ', ', text) # "b,e" -> "b, e" text = re.sub(r'\s*;\s*', '; ', text) # "a;b" -> "a; b" text = re.sub(r'\s*:\s*', ': ', text) # "a:b" -> "a: b" # Remove extra whitespace text = re.sub(r'\s+', ' ', text).strip() # Normalize decimal places and numbers text = re.sub(r'(\d+)\.0+$', r'\1', text) # "89706.00" -> "89706" text = re.sub(r'(\d+),(\d{3})', r'\1\2', text) # "89,706" -> "89706" # Remove common formatting artifacts text = re.sub(r'["""''`]', '"', text) # Normalize quotes text = re.sub(r'[–—]', '-', text) # Normalize dashes text = re.sub(r'[^\w\s,.-]', '', text) # Remove special characters # Handle common answer formats text = re.sub(r'^the answer is\s*', '', text) text = re.sub(r'^answer:\s*', '', text) text = re.sub(r'^final answer:\s*', '', text) return text normalized_expected = normalize_format(expected) normalized_our = normalize_format(our_clean) # Check normalized exact match if normalized_our == normalized_expected: return {"status": "CORRECT", "expected": expected, "our": our_clean} # For list-type answers, try element-wise comparison if ',' in expected and ',' in our_clean: expected_items = [item.strip().lower() for item in expected.split(',')] our_items = [item.strip().lower() for item in our_clean.split(',')] # Sort both lists for comparison (handles different ordering) if sorted(expected_items) == sorted(our_items): return {"status": "CORRECT", "expected": expected, "our": our_clean} # Check if most items match (partial credit) matching_items = set(expected_items) & set(our_items) if len(matching_items) >= len(expected_items) * 0.7: # 70% match threshold return {"status": "PARTIAL", "expected": expected, "our": our_clean} # Check if our answer contains the expected answer (broader match) if normalized_expected in normalized_our or normalized_our in normalized_expected: return {"status": "PARTIAL", "expected": expected, "our": our_clean} # ENHANCED: Numeric equivalence checking import re expected_numbers = re.findall(r'\d+(?:\.\d+)?', expected) our_numbers = re.findall(r'\d+(?:\.\d+)?', our_clean) if expected_numbers and our_numbers: try: # Compare primary numbers expected_num = float(expected_numbers[0]) our_num = float(our_numbers[0]) # Allow small floating point differences if abs(expected_num - our_num) < 0.01: return {"status": "CORRECT", "expected": expected, "our": our_clean} # Check for percentage differences (e.g., rounding errors) if expected_num > 0: percentage_diff = abs(expected_num - our_num) / expected_num if percentage_diff < 0.01: # 1% tolerance return {"status": "CORRECT", "expected": expected, "our": our_clean} except (ValueError, IndexError): pass # ENHANCED: Fuzzy matching for near-correct answers def fuzzy_similarity(str1, str2): """Calculate simple character-based similarity""" if not str1 or not str2: return 0.0 # Convert to character sets chars1 = set(str1.lower()) chars2 = set(str2.lower()) # Calculate Jaccard similarity intersection = len(chars1 & chars2) union = len(chars1 | chars2) return intersection / union if union > 0 else 0.0 # Check fuzzy similarity for near matches similarity = fuzzy_similarity(normalized_expected, normalized_our) if similarity > 0.8: # 80% character similarity return {"status": "PARTIAL", "expected": expected, "our": our_clean} # Final check: word-level matching expected_words = set(normalized_expected.split()) our_words = set(normalized_our.split()) if expected_words and our_words: word_overlap = len(expected_words & our_words) / len(expected_words) if word_overlap > 0.7: # 70% word overlap return {"status": "PARTIAL", "expected": expected, "our": our_clean} return {"status": "INCORRECT", "expected": expected, "our": our_clean} def classify_all_questions(self) -> Dict[str, List[Dict]]: """Classify all questions and group by agent type""" self.logger.info("🧠 Classifying all GAIA questions...") questions_by_agent = defaultdict(list) classification_stats = defaultdict(int) for question_data in self.loader.questions: task_id = question_data.get('task_id', 'unknown') question_text = question_data.get('question', '') file_name = question_data.get('file_name', '') try: classification = self.classifier.classify_question(question_text, file_name) primary_agent = classification['primary_agent'] # Add classification to question data question_data['classification'] = classification question_data['routing'] = self.classifier.get_routing_recommendation(classification) questions_by_agent[primary_agent].append(question_data) classification_stats[primary_agent] += 1 self.logger.info(f" {task_id[:8]}... → {primary_agent} (confidence: {classification['confidence']:.3f})") except Exception as e: self.logger.error(f" āŒ Classification failed for {task_id[:8]}...: {e}") questions_by_agent['error'].append(question_data) # Print classification summary self.logger.info(f"\nšŸ“Š CLASSIFICATION SUMMARY:") total_questions = len(self.loader.questions) for agent_type, count in sorted(classification_stats.items()): percentage = (count / total_questions) * 100 self.logger.info(f" {agent_type}: {count} questions ({percentage:.1f}%)") return dict(questions_by_agent) def test_agent_type(self, agent_type: str, questions: List[Dict], test_all: bool = False) -> List[Dict]: """Test all questions for a specific agent type""" if not questions: self.logger.warning(f"No questions found for agent type: {agent_type}") return [] self.logger.info(f"\nšŸ¤– TESTING {agent_type.upper()} AGENT") self.logger.info(f"=" * 60) self.logger.info(f"Questions to test: {len(questions)}") agent_results = [] success_count = 0 for i, question_data in enumerate(questions, 1): task_id = question_data.get('task_id', 'unknown') question_text = question_data.get('question', '') file_name = question_data.get('file_name', '') self.logger.info(f"\n[{i}/{len(questions)}] Testing {task_id[:8]}...") self.logger.info(f"Question: {question_text[:100]}...") if file_name: self.logger.info(f"File: {file_name}") try: start_time = time.time() answer = self.solver.solve_question(question_data) solve_time = time.time() - start_time # Validate answer against expected result validation_result = self.validate_answer(task_id, answer) # Log results with validation self.logger.info(f"āœ… Answer: {answer[:100]}...") self.logger.info(f"ā±ļø Time: {solve_time:.1f}s") self.logger.info(f"šŸ” Expected: {validation_result['expected']}") self.logger.info(f"šŸ“Š Validation: {validation_result['status']}") if validation_result['status'] == 'CORRECT': self.logger.info(f"āœ… PERFECT MATCH!") actual_status = 'correct' elif validation_result['status'] == 'PARTIAL': self.logger.info(f"🟔 PARTIAL MATCH - contains correct answer") actual_status = 'partial' elif validation_result['status'] == 'INCORRECT': self.logger.error(f"āŒ INCORRECT - answers don't match") actual_status = 'incorrect' else: self.logger.warning(f"āš ļø NO VALIDATION DATA") actual_status = 'no_validation' result = { 'question_id': task_id, 'question': question_text, 'file_name': file_name, 'agent_type': agent_type, 'classification': question_data.get('classification'), 'routing': question_data.get('routing'), 'answer': answer, 'solve_time': solve_time, 'status': 'completed', 'validation_status': validation_result['status'], 'expected_answer': validation_result['expected'], 'actual_status': actual_status, 'error_type': None, 'error_details': None } agent_results.append(result) if actual_status == 'correct': success_count += 1 except Exception as e: solve_time = time.time() - start_time error_type = self.categorize_error(str(e)) self.logger.error(f"āŒ Error: {e}") self.logger.error(f"Error Type: {error_type}") result = { 'question_id': task_id, 'question': question_text, 'file_name': file_name, 'agent_type': agent_type, 'classification': question_data.get('classification'), 'routing': question_data.get('routing'), 'answer': f"Error: {str(e)}", 'solve_time': solve_time, 'status': 'error', 'error_type': error_type, 'error_details': str(e) } agent_results.append(result) self.error_patterns[agent_type].append({ 'question_id': task_id, 'error_type': error_type, 'error_details': str(e), 'question_preview': question_text[:100] }) # Small delay to avoid overwhelming APIs time.sleep(1) # Agent type summary with accuracy metrics error_count = len([r for r in agent_results if r['status'] == 'error']) completed_count = len([r for r in agent_results if r['status'] == 'completed']) correct_count = len([r for r in agent_results if r.get('actual_status') == 'correct']) partial_count = len([r for r in agent_results if r.get('actual_status') == 'partial']) incorrect_count = len([r for r in agent_results if r.get('actual_status') == 'incorrect']) accuracy_rate = (correct_count / len(questions)) * 100 if questions else 0 completion_rate = (completed_count / len(questions)) * 100 if questions else 0 self.logger.info(f"\nšŸ“Š {agent_type.upper()} AGENT RESULTS:") self.logger.info(f" Completed: {completed_count}/{len(questions)} ({completion_rate:.1f}%)") self.logger.info(f" āœ… Correct: {correct_count}/{len(questions)} ({accuracy_rate:.1f}%)") self.logger.info(f" 🟔 Partial: {partial_count}/{len(questions)}") self.logger.info(f" āŒ Incorrect: {incorrect_count}/{len(questions)}") self.logger.info(f" šŸ’„ Errors: {error_count}/{len(questions)}") if agent_results: completed_results = [r for r in agent_results if r['status'] == 'completed'] if completed_results: avg_time = sum(r['solve_time'] for r in completed_results) / len(completed_results) self.logger.info(f" ā±ļø Average Solve Time: {avg_time:.1f}s") return agent_results def categorize_error(self, error_message: str) -> str: """Categorize error types for analysis""" error_message_lower = error_message.lower() if '503' in error_message or 'service unavailable' in error_message_lower: return 'API_OVERLOAD' elif 'timeout' in error_message_lower or 'time out' in error_message_lower: return 'TIMEOUT' elif 'api' in error_message_lower and ('key' in error_message_lower or 'auth' in error_message_lower): return 'AUTHENTICATION' elif 'wikipedia' in error_message_lower or 'wiki' in error_message_lower: return 'WIKIPEDIA_TOOL' elif 'chess' in error_message_lower or 'fen' in error_message_lower: return 'CHESS_TOOL' elif 'excel' in error_message_lower or 'xlsx' in error_message_lower: return 'EXCEL_TOOL' elif 'video' in error_message_lower or 'youtube' in error_message_lower: return 'VIDEO_TOOL' elif 'gemini' in error_message_lower: return 'GEMINI_API' elif 'download' in error_message_lower or 'file' in error_message_lower: return 'FILE_PROCESSING' elif 'hallucination' in error_message_lower or 'fabricat' in error_message_lower: return 'HALLUCINATION' elif 'parsing' in error_message_lower or 'extract' in error_message_lower: return 'PARSING_ERROR' else: return 'UNKNOWN' def analyze_errors_by_agent(self): """Analyze error patterns by agent type""" if not self.error_patterns: self.logger.info("šŸŽ‰ No errors found across all agent types!") return self.logger.info(f"\nšŸ” ERROR ANALYSIS BY AGENT TYPE") self.logger.info("=" * 60) for agent_type, errors in self.error_patterns.items(): if not errors: continue self.logger.info(f"\n🚨 {agent_type.upper()} AGENT ERRORS ({len(errors)} total):") # Group errors by type error_type_counts = defaultdict(int) for error in errors: error_type_counts[error['error_type']] += 1 for error_type, count in sorted(error_type_counts.items(), key=lambda x: x[1], reverse=True): percentage = (count / len(errors)) * 100 self.logger.info(f" {error_type}: {count} errors ({percentage:.1f}%)") # Show specific examples self.logger.info(f" Examples:") for error in errors[:3]: # Show first 3 errors self.logger.info(f" - {error['question_id'][:8]}...: {error['error_type']} - {error['question_preview']}...") def generate_improvement_recommendations(self): """Generate specific recommendations for improving each agent type""" self.logger.info(f"\nšŸ’” IMPROVEMENT RECOMMENDATIONS") self.logger.info("=" * 60) all_results = [r for agent_results in self.results for r in agent_results] # Calculate success rates by agent type agent_stats = defaultdict(lambda: {'total': 0, 'success': 0, 'errors': []}) for result in all_results: agent_type = result['agent_type'] agent_stats[agent_type]['total'] += 1 if result['status'] == 'completed': agent_stats[agent_type]['success'] += 1 else: agent_stats[agent_type]['errors'].append(result) # Generate recommendations for each agent type for agent_type, stats in agent_stats.items(): success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0 self.logger.info(f"\nšŸŽÆ {agent_type.upper()} AGENT (Success Rate: {success_rate:.1f}%):") if success_rate >= 90: self.logger.info(f" āœ… Excellent performance! Minor optimizations only.") elif success_rate >= 75: self.logger.info(f" āš ļø Good performance with room for improvement.") elif success_rate >= 50: self.logger.info(f" šŸ”§ Moderate performance - needs attention.") else: self.logger.info(f" 🚨 Poor performance - requires major improvements.") # Analyze common error patterns for this agent error_types = defaultdict(int) for error in stats['errors']: if error['error_type']: error_types[error['error_type']] += 1 if error_types: self.logger.info(f" Common Issues:") for error_type, count in sorted(error_types.items(), key=lambda x: x[1], reverse=True): self.logger.info(f" - {error_type}: {count} occurrences") self.suggest_fix_for_error_type(error_type, agent_type) def suggest_fix_for_error_type(self, error_type: str, agent_type: str): """Suggest specific fixes for common error types""" suggestions = { 'API_OVERLOAD': "Implement exponential backoff and retry logic", 'TIMEOUT': "Increase timeout limits or optimize processing pipeline", 'AUTHENTICATION': "Check API keys and authentication configuration", 'WIKIPEDIA_TOOL': "Enhance Wikipedia search logic and error handling", 'CHESS_TOOL': "Improve FEN parsing and chess engine integration", 'EXCEL_TOOL': "Add better Excel format validation and error recovery", 'VIDEO_TOOL': "Implement fallback mechanisms for video processing", 'GEMINI_API': "Add Gemini API error handling and fallback models", 'FILE_PROCESSING': "Improve file download and validation logic", 'HALLUCINATION': "Strengthen anti-hallucination prompts and tool output validation", 'PARSING_ERROR': "Enhance output parsing logic and format validation" } suggestion = suggestions.get(error_type, "Investigate error cause and implement appropriate fix") self.logger.info(f" → Fix: {suggestion}") def save_comprehensive_results(self, questions_by_agent: Dict[str, List[Dict]]): """Save comprehensive test results with error analysis""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") results_file = f"gaia_classification_test_results_{timestamp}.json" # Flatten all results all_results = [] for agent_results in self.results: all_results.extend(agent_results) # Create comprehensive results comprehensive_results = { 'test_metadata': { 'timestamp': timestamp, 'total_questions': len(self.loader.questions), 'questions_by_agent': {agent: len(questions) for agent, questions in questions_by_agent.items()}, 'log_file': self.log_file }, 'overall_stats': { 'total_questions': len(all_results), 'successful': len([r for r in all_results if r['status'] == 'completed']), 'errors': len([r for r in all_results if r['status'] == 'error']), 'success_rate': len([r for r in all_results if r['status'] == 'completed']) / len(all_results) * 100 if all_results else 0 }, 'agent_performance': {}, 'error_patterns': dict(self.error_patterns), 'detailed_results': all_results } # Calculate per-agent performance agent_stats = defaultdict(lambda: {'total': 0, 'success': 0, 'avg_time': 0}) for result in all_results: agent_type = result['agent_type'] agent_stats[agent_type]['total'] += 1 if result['status'] == 'completed': agent_stats[agent_type]['success'] += 1 agent_stats[agent_type]['avg_time'] += result['solve_time'] for agent_type, stats in agent_stats.items(): success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0 avg_time = stats['avg_time'] / stats['success'] if stats['success'] > 0 else 0 comprehensive_results['agent_performance'][agent_type] = { 'total_questions': stats['total'], 'successful': stats['success'], 'success_rate': success_rate, 'average_solve_time': avg_time } # Save results with open(results_file, 'w') as f: json.dump(comprehensive_results, f, indent=2, ensure_ascii=False) self.logger.info(f"\nšŸ’¾ Comprehensive results saved to: {results_file}") return results_file def run_classification_test(self, agent_types: Optional[List[str]] = None, test_all: bool = True): """Run the complete classification-based testing workflow""" self.logger.info("šŸš€ GAIA CLASSIFICATION-BASED TESTING") self.logger.info("=" * 70) self.logger.info(f"Log file: {self.log_file}") # Step 1: Classify all questions questions_by_agent = self.classify_all_questions() # Step 2: Filter agent types to test if agent_types: agent_types_to_test = [agent for agent in agent_types if agent in questions_by_agent] if not agent_types_to_test: self.logger.error(f"No questions found for specified agent types: {agent_types}") return else: agent_types_to_test = list(questions_by_agent.keys()) self.logger.info(f"\nTesting agent types: {agent_types_to_test}") # Step 3: Test each agent type for agent_type in agent_types_to_test: if agent_type == 'error': # Skip classification errors for now continue questions = questions_by_agent[agent_type] agent_results = self.test_agent_type(agent_type, questions, test_all) self.results.append(agent_results) # Step 4: Comprehensive analysis self.analyze_errors_by_agent() self.generate_improvement_recommendations() # Step 5: Save results results_file = self.save_comprehensive_results(questions_by_agent) self.logger.info(f"\nāœ… CLASSIFICATION TESTING COMPLETE!") self.logger.info(f"šŸ“Š Results saved to: {results_file}") self.logger.info(f"šŸ“‹ Log file: {self.log_file}") def main(): """Main CLI interface for classification-based testing""" parser = argparse.ArgumentParser(description="GAIA Classification-Based Testing with Error Analysis") parser.add_argument( '--agent-types', nargs='+', choices=['multimedia', 'research', 'logic_math', 'file_processing', 'general'], help='Specific agent types to test (default: all)' ) parser.add_argument( '--failed-only', action='store_true', help='Test only questions that failed in previous runs' ) parser.add_argument( '--quick-test', action='store_true', help='Run a quick test with limited questions per agent type' ) args = parser.parse_args() # Initialize and run tester tester = GAIAClassificationTester() print("šŸŽÆ Starting GAIA Classification-Based Testing...") if args.agent_types: print(f"šŸ“‹ Testing specific agent types: {args.agent_types}") else: print("šŸ“‹ Testing all agent types") tester.run_classification_test( agent_types=args.agent_types, test_all=not args.quick_test ) if __name__ == "__main__": main()