#!/usr/bin/env python3 """ Comprehensive Accuracy Test - Full GAIA Benchmark Evaluation Runs all 20 questions through the async batch processor for complete accuracy assessment """ import asyncio import sys from pathlib import Path from datetime import datetime import json # Add parent directory to path for imports sys.path.append(str(Path(__file__).parent.parent)) from tests.async_batch_processor import BatchQuestionProcessor from gaia_web_loader import GAIAQuestionLoaderWeb async def run_comprehensive_accuracy_test(): """Run comprehensive accuracy test on all available GAIA questions""" print("šŸŽÆ COMPREHENSIVE GAIA ACCURACY TEST") print("=" * 80) print(f"šŸ• Start Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") print(f"šŸŽÆ Goal: Establish baseline accuracy and identify improvement areas") print() try: # Load all questions print("šŸ“‹ Loading all GAIA questions...") loader = GAIAQuestionLoaderWeb() all_questions = loader.questions print(f"āœ… Loaded {len(all_questions)} questions from GAIA benchmark") # Show question distribution by level level_counts = {} classification_preview = {} for q in all_questions: level = q.get('Level', 'Unknown') level_counts[level] = level_counts.get(level, 0) + 1 # Quick classification preview (first 5 questions) if len(classification_preview) < 5: task_id = q.get('task_id', 'unknown') question_preview = q.get('question', '')[:60] + "..." has_file = "Yes" if q.get('file_name') else "No" classification_preview[task_id[:8]] = { 'question': question_preview, 'level': level, 'has_file': has_file } print(f"\nšŸ“Š Question Distribution:") for level, count in sorted(level_counts.items()): print(f" Level {level}: {count} questions") print(f"\nšŸ“‹ Sample Questions:") for task_id, info in classification_preview.items(): print(f" {task_id}... | L{info['level']} | File: {info['has_file']} | {info['question']}") # Initialize batch processor with production settings print(f"\nšŸš€ Initializing production-grade batch processor...") processor = BatchQuestionProcessor( max_concurrent=3, # Balanced concurrency for stability question_timeout=900, # 15 minutes per question for complex cases progress_interval=15 # Progress updates every 15 seconds ) print(f"āš™ļø Configuration:") print(f" - Max Concurrent: {processor.max_concurrent}") print(f" - Question Timeout: {processor.question_timeout}s (15 minutes)") print(f" - Progress Interval: {processor.progress_interval}s") print(f" - Expected Duration: ~{len(all_questions) * 3 // processor.max_concurrent // 60} minutes") # Confirm before starting print(f"\nāš ļø This will process ALL {len(all_questions)} questions concurrently.") print(f"šŸ“Š Estimated time: {len(all_questions) * 3 // processor.max_concurrent} minutes") print(f"šŸ”„ Starting comprehensive accuracy test...") print() # Process all questions start_time = datetime.now() results = await processor.process_questions_batch( all_questions, solver_kwargs={ "use_kluster": True, "kluster_model": "qwen3-235b" } ) end_time = datetime.now() # Comprehensive results analysis print(f"\n" + "=" * 80) print(f"šŸ COMPREHENSIVE TEST RESULTS") print(f"=" * 80) duration = (end_time - start_time).total_seconds() accuracy = results["accuracy_metrics"]["accuracy_rate"] success = results["accuracy_metrics"]["success_rate"] print(f"ā±ļø Total Duration: {int(duration // 60)}m {int(duration % 60)}s") print(f"āœ… Overall Accuracy: {accuracy:.1%} ({results['accuracy_metrics']['correct_answers']}/{results['completed_questions']})") print(f"šŸŽÆ Success Rate: {success:.1%} (including partial matches)") print(f"⚔ Average per Question: {results['performance_metrics']['average_duration']:.1f}s") # Detailed breakdown print(f"\nšŸ“Š DETAILED BREAKDOWN:") print(f" āœ… CORRECT: {results['accuracy_metrics']['correct_answers']}") print(f" 🟔 PARTIAL: {results['accuracy_metrics']['partial_answers']}") print(f" āŒ INCORRECT: {results['accuracy_metrics']['incorrect_answers']}") print(f" ā±ļø TIMEOUT: {results['accuracy_metrics']['timeouts']}") print(f" šŸ’„ ERROR: {results['accuracy_metrics']['errors']}") # Classification performance analysis print(f"\nšŸŽÆ CLASSIFICATION PERFORMANCE:") classification_performance = {} for result in results["detailed_results"]: classification = result.classification if classification not in classification_performance: classification_performance[classification] = { 'total': 0, 'correct': 0, 'partial': 0, 'incorrect': 0 } classification_performance[classification]['total'] += 1 if result.status == 'CORRECT': classification_performance[classification]['correct'] += 1 elif result.status == 'PARTIAL': classification_performance[classification]['partial'] += 1 elif result.status == 'INCORRECT': classification_performance[classification]['incorrect'] += 1 # Sort by accuracy for prioritization sorted_classifications = sorted( classification_performance.items(), key=lambda x: (x[1]['correct'] + x[1]['partial'] * 0.5) / x[1]['total'] if x[1]['total'] > 0 else 0 ) for classification, perf in sorted_classifications: total = perf['total'] if total > 0: accuracy_rate = perf['correct'] / total success_rate = (perf['correct'] + perf['partial']) / total print(f" {classification:15} | {accuracy_rate:.1%} acc | {success_rate:.1%} success | {total:2d} questions") # Identify improvement priorities print(f"\nšŸ”§ IMPROVEMENT PRIORITIES:") improvement_priorities = [] for classification, perf in sorted_classifications: total = perf['total'] if total > 0: accuracy_rate = perf['correct'] / total impact_score = total * (1 - accuracy_rate) # Questions * failure rate if accuracy_rate < 0.7: # Less than 70% accuracy priority = "HIGH" if impact_score > 2 else "MEDIUM" improvement_priorities.append({ 'classification': classification, 'accuracy': accuracy_rate, 'total_questions': total, 'impact_score': impact_score, 'priority': priority }) for priority_item in sorted(improvement_priorities, key=lambda x: x['impact_score'], reverse=True): classification = priority_item['classification'] accuracy = priority_item['accuracy'] total = priority_item['total_questions'] priority = priority_item['priority'] impact = priority_item['impact_score'] print(f" šŸ”„ {priority:6} | {classification:15} | {accuracy:.1%} accuracy | {total} questions | Impact: {impact:.1f}") # Save detailed results timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") results_file = f"logs/comprehensive_accuracy_test_{timestamp}.json" with open(results_file, 'w') as f: json.dump({ 'test_metadata': { 'timestamp': timestamp, 'total_questions': len(all_questions), 'duration_seconds': duration, 'configuration': { 'max_concurrent': processor.max_concurrent, 'question_timeout': processor.question_timeout, 'model': 'qwen3-235b' } }, 'overall_metrics': results['accuracy_metrics'], 'classification_performance': classification_performance, 'improvement_priorities': improvement_priorities, 'detailed_results': [ { 'task_id': r.task_id, 'classification': r.classification, 'status': r.status, 'accuracy_score': r.accuracy_score, 'our_answer': r.our_answer, 'expected_answer': r.expected_answer, 'duration': r.total_duration, 'error_type': r.error_type } for r in results['detailed_results'] ] }, f, indent=2) print(f"\nšŸ“ Detailed results saved to: {results_file}") # Summary and next steps print(f"\nšŸŽÆ NEXT STEPS RECOMMENDATION:") if accuracy >= 0.9: print(f" šŸ† EXCELLENT: {accuracy:.1%} accuracy achieved! Focus on edge cases.") elif accuracy >= 0.7: print(f" āœ… GOOD: {accuracy:.1%} accuracy. Target specific classifications for 90%+.") elif accuracy >= 0.5: print(f" šŸ”§ MODERATE: {accuracy:.1%} accuracy. Implement targeted improvements.") else: print(f" 🚨 NEEDS WORK: {accuracy:.1%} accuracy. Focus on high-impact areas.") if improvement_priorities: top_priority = improvement_priorities[0] print(f" šŸŽÆ TOP PRIORITY: {top_priority['classification']} ({top_priority['accuracy']:.1%} accuracy, {top_priority['total_questions']} questions)") return results except Exception as e: print(f"āŒ Comprehensive test failed: {e}") import traceback traceback.print_exc() return None async def main(): """Run the comprehensive accuracy test""" results = await run_comprehensive_accuracy_test() if results: accuracy = results["accuracy_metrics"]["accuracy_rate"] print(f"\nšŸŽ‰ Comprehensive accuracy test completed!") print(f"šŸ“Š Final Accuracy: {accuracy:.1%}") if accuracy >= 0.7: print(f"šŸŽÆ TARGET ACHIEVED: 70%+ accuracy reached!") else: gap = 0.7 - accuracy print(f"šŸ”§ GAP TO TARGET: {gap:.1%} improvement needed for 70%") if __name__ == "__main__": asyncio.run(main())